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*% -" Abstract
I

This thesis extends the AFIT research directed towards

replacing a standard correlation tracker with a Kalman

filter bank/enhanced correlation tracker in a high energy

laser weapon system. Airborne targets are tracked by a

Bayesian multiple model adaptive filtering (MMAF) algorithm,

which utilizes an array of infrared sensing detectors as the S

measurement information for two-dimensional position data.

Two different target dynamics models are exercised: a

linear, Gauss-Markov accleration model, and a nonlinear, 5

constant turn-rate model. Performance analyses are

accomplished via Nonte Carlo simulation techniques. %14"

Extending the adaptive potential of the tracking algorithm

is of primary emphasis. The effects of bending and

vibration of a large space structure on the FLIR's ability •

to resolve target position is analyzed. Also, a performance

comparison/simulation time tradeoff is conducted with the

tracking algorithm operating ot both 30 Hz and 50 Hz. A,

Sensitivity studies of adaptive responsiveness to varying

target trajectories, various filter-assumed correlation

times, range to pixel size relationships, and pixel size to

filter driving white noise strength relationships are

performed. The robustness of the multiple model algorithm

is demonstrated by its ability to adapt to scenarios which

It had not been previously tuned.

• ii
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A MULTIPLE MODEL ADAPTIVE TRACKING .

ALGORITHM AGAINST AIRBORNE TARGETS

I. Introduction

In view of the Strategic Defense Initiative, increased ti.

interest has been placed on the laser as a prime candidate

for a potential weapon in a space-based defensive system. ..

Because of a laser's ability to transmit energy from the

weapon to the target at the speed of light, the need to

compute a lead angle, a necessity with ballistic proJec-

tiles, is eliminated. However, several factors affect a •

laser's effectiveness on a given target: the medium in which

the beam travels, the power or Intensity of the beam, the

capability to acquire the target, and the ability to track

the target for a sufficient time to neutralize it. .-

The precision pointing and accurate tracking capabili-

ties are crucial to the development of a laser weapon

system. It would not suffice to "paint" the target with

laser energy nor Is it feasible to have a space-based laser

powerful enough that would neutralize a target '-.

instantaneously. Limited energy is available in the laser

beam, thus motivating the research into highly accurate

pointing and tracking systems for space applications.

r'. Pr..e
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1.1 Background

~ The Air Force Weapons Laboratory (AFWL) at Kirtland

AFB, N4ew Mexico, Is currently developing and testing a high

energy laser weapon for use against airborne targets. The

current tracking method employs a Forward Looking infrared

Sensor (FLIR) to detect the target passively and maintain a

low probability of detection by the target. The FLUR detec-

tor plane comprises a 300 x 500 array of pixels, or picture

* elements, where each pixel can focus detected energy through

an angle of 20 micro-radians In two orthogonal directions.

The tracking algorithm extracts a "tracking window" from the

-~ larger array and processes the detector outputs to align the

tracker's fieald-of-view (FOV). This algorithm detects tar-

get offsets from the center of the FOV.

Currently, AFYL employs a correlation tracker to pro-

cess pointing and tracking sensor information. This tracker

compares the previous sample of FLUR information to the

present information. Relative position offsets from one

-~ data frame to the next are cross correlated and this Infor-

mation update commands the control system to center the

target In the field-of-view. This enables the laser to

maintain lock on a given target since the FLIR and laser

share the same optics.

Since no a priori knowledge of target characteristics

is required, the correlation tracking algorithm can be

applied to a wide variety of targets; however, It exhibits

- several limitations. First, the correlation algorithm does

2



*~* .~...not take advantage of target dynamic characteristics, which

have been thoroughly documented. In addition, it is highly

susceptible to noise and Is not capable of distinguishing

v between apparent target motion due to signal corruption, as

a result of atmospheric distortion, and true target motion.

This "Jitter" effect (18) could cause a translation in the

FUSR image plane and thus result in the laser beam pointing

in a direction other than towards the target. Mirror vibra-

tion effects and system component bending effects also con-

a' tribute to the image plane translation phenomena. Another

limitation Is the time difference between computing the

image correlation and the actual time for the gimbal system

to engage for pointing. A tracking algorithm that antici-

pates future target position based upon past and present

information could compensate for these limitations.

Since, under the appropriate conditions, it Is an

optimal linear estimator, the Kalman filter (9) is Ideally

suited for overcoming these limitations. By modeling

different types of targets, various parameters such as size,

shape, and acceleration characteristics of each target type

would either be known or could be estimated. If statistical

characteristics of measurement errors and atmospheric Jitter

are Included, the filter can predict target position more

accurately. This prediction, or optimal estimate, reduces

tracking errors due to time delays or pointing system lags

~ ~ by allowing the PLIR to anticipate target motion.

'N 3
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1.2 Previous AfIT Research2'

Over the past eight years, the Air Force Institute of

Technology students and staff have generated numerous papers

and theses investigating the feasibility and performance

benefits of both enhanced correlation/linear Kalman filter

tracking and extended Kalman filtering tracking algorithms,

all incorporating online adaptations, with the high energy

laser pointing and tracking system. Both Netzer (14) and

Tobin (19) had summarized their predecessor's endeavors and

a modification of their observations follows.

Initially, the study by Mercier (12) demonstrated that

the extended Kalman filter (BKF) algorithm outperformed the

standard correlation tracker algorithm in the ability to h

track long range targets modeled as infrared radiation point

sources. The FLIR plane image of the target was assumed to

have a bivar late Gaussian distribution and was modeled with -

equal-intensity, circular contours. The four-state filter

was predicated on a benign target dynamics model with a

first order, zero-mean Gauss-Karkov (GM) position model.

The intensity distribution due to atmospheric disturbances

was initially approximated by a third order shaping filter,

and then this was replaced by a first order shaping filter

driven by white, Gaussian noise through reduced order

modeling. Filter measurement noise was considered to be

uncorrelated in both time and space. This tracking

* --*algorithm enhanced tracking performance an order of

4'l



-' magnitude better than observed with the correlation tracker

in benign scenarios.

IHarnly and Jensen (4) incorporated velocity and accel-

eration estimates to accommuodate for the tracking of more

maneuverable targets. They extended the FUIR plane Image

constant-intensity contours to represent an elliptical con-

figuration oriented at specified angles such that the major

axis was aligned with the estimated velocity vector (versus

V circular contours), in addition to incorporating a spatially

correlated Gaussian noise model to represent FUIR sensor and

background noises. They also incorporated a maneuver detec-

tion algorithm and a means of appropriately responding to

detected maneuvers by gain changing and modification of the

0* dynamics models. Finally, they modified the algorithm to

4 estimate the target's true size and shape adaptively.

In previous research efforts, the extended Kalman fil-

ters were given target intensity function information,

specifically that bivariate Gaussian shapes adequately

depicted the targets, perhaps requiring some estimation of

parameters associated with that function. Research by

Singletery (17) and Rogers (16) implemented algorithms which

made no a priori assumption about target shape and tested

* the algorithms against targets with multiple hot-spots and

several dynamic orientations. Rogers developed an alterna-

tive tracker which used the target shape function as a

template for an enhanced correlator. The correlator

5
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produced measurement offsets in the two orthogonal direc-

tions from the center of the FOV and fed these measurements I

as inputs to a linear Kalman filter. A linear Kalman filter

rather than a non-linear extended Kalman filter could be

utilized since the measuremerts, or offset distances, were

linear functions of the filter states. When analogous

performance is achievable, the linear Kalman filter Is

preferred over the extended Kalman filter due to the lower

level of computational loading.

Kozemchak (7) continued the research by implementing

the digital signal processing techniques of Rogers' (16)

shape identification algorithm for the case of highly

dynamic targets. He substantiated that filters based on

both the Gauss-Markov target acceleration and constant turn-
B

rate target dynamics exhibited good tracking performance in

the presence of dynamic images; these dynamic images

corresponded to realistic projections of multiple hot-spot

targets onto the FLIR image plane. Tracking performance was

also favorable when experiencing drastic image changes

inherent in constant g and constant roll-rate maneuvers.

Further research by Millner (13) included a data

processing algorithm to generate an estimated intensity "

function relationship to be utilized as a template in the

correlation algorithm, which is the same as Rogers' (16)

alternative filter idea, although with a modified dynamics

model to address the highly maneuvering target scenario.

* "This method showed that nearly Identical tracking

6



performance was achieved In both the single and multiple

hot-spot scenarios. However, inadequate target tracking

performance occurred for targets exhibiting maneuvers in

excess of five g's.

In an attempt to thwart this limitation, Flynn (3)

investigated the possibility of multiple model adaptive

* filtering (MMAF) techniques for filter Implementation.

Suizu (18) pursued this effort and successfully implemented

the MMAF in addition to demonstrating that it performed well

against a wide dynamic range of targets. The model con-

tained a bank of two filters, one tuned for highly

maneuvering targets with a FOV of 24 X 24 pixels and the V-

other tuned for benign targets with a FOV of 8 X 8 pixels. %

Based upon probabilistic weighting, the filter adaptively

changed the assumed target dynamics and corresponding FOV

* array, which resulted in increasing filter performance to

allow the tracking of targets varying from benign straight-

line trajectories to pulling 20 g's at 20 kilometers. Both

the linear Kalman filter/correlation algorithm and the EKF

were tested, and both algorithms demonstrated the capability

to track targets with trajectories that maneuvered signifi-

cantly throughout the simulation scenario.

Loving (8) continued the rezearch by adding a filter to

the KNAF bank based on an intermediate level of target

dynamics, to aid in tracking highly maneuvering targets. She

developed a Maximum a Posteriori (MAP) algorithm and comn-

7



pared it to the Bayesian estimator. The MAP algorithm took

advantage of the existing MMAF structure and generated state

estimates from the one elemental filter with the highest

probability of validity, versus probabilistically weighting

all elemental filter estimates. The addition of the third

elemental filter to the MMAF bank significantly enhanced the

tracking ability of highly maneuvering targets. Both the

MAP and Bayesian techniques displayed favorable tracking

performance against several target maneuvers.

Follow-on research by Netzer (14) expanded the results

produced by Loving (8) and employed the linear filter/corre-

lator algorithm developed by Rogers (16) but modified for

harsher target dynamics. He investigated the steady state

bias errors as a result of the algorithm tracking a high-g,

constant turn rate maneuvering target. It was determined

that the predominant cause of the bias was due to mis-

matching of the FLIR azimuth-channel dynamics model and FOV

size when a true target maneuver in the elevation direction

forced the MMAF to select a harsh dynamics model and wide

field-of-view in order to maintain lock on the target. This

motivated the investigation of a MMAF based on separate

elemental filters that are tuned specifically for harsh

maneuvers in either the x- or y-channels, which would enable

the tracker to distinguish between x-direction and y-

direction maneuvers. This technique would provide the capa-

bility for the tracker to expand the FOV in the critical

8
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direction and maintain lock on a maneuvering target while
,0

retaining maximum resolution in the non-critical direction.

Most recently, Tobin (19) implemented a constant-turn-

rate dynamics model since the zero-mean, first order Gauss-

Markov acceleration processes did not adequately describe

target dynamics in some cases. Although he demonstrated

that the steady-state standard deviation errors were

typically smaller in the CTR model, the GM MMAF outperformed

the CTR MMAF with respect to the transient characteristics

of target maneuvers. Tobin also included rectangular FOV

elemental filters tuned specifically for target maneuvers in

both the x- and y-directions and ascertained that the

tracker maintained lock on the target at the onset of

y-direction maneuvers while retaining maximum resolution in

the more benign x-direction.

1.3 ObJectives

During the past eight years, substantial development

has been accomplished on a tracker capable of handling

multiple hot-spot targets in which digital signal processing

techniques have been employed on FLIR sensor information to

identify the underlying target shape. Most recently,

adaptation of the field of view to maintain track on harshly

maneuvering targets at close ranges has been investigated

through multiple model adaptive filtering techniques. Both

the correlator tracker and the multiple model adaptive

filter tracker have been assessed with respect to several

* 9
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A tracking scenarios. This research Is motivated by the fact

that a further assessment of the capabilities of these two

designs warrants continued investigation In an attempt to

extend their applicability. Therefore, the intent is to

continue the research effort in developing a viable tracking F

algorithm by accomplishing the following objectives.

1.3.1 Sending and Vibration Phenomena,. Previous

research had considered the tracker to be ground-based and

the effects of structural bending and vibration were felt to

be negligible. This research shall consider the application

4 of the tracker to a space structure and model the effects of

bending and vibration. It shall analyze the resulting

tracker performance when the filter does not account for

these effects through additional states to be estimated.

implementation of bending/vibration phenomena will only be

incorporated explicitly into the truth model, while filter .

retuning may be performed to enhance filter performance

without increasing its state dimension.

1.3.2 Implementation at 50 Hz. The current tracking

simulation is implemented digitally at a 30 Hz rate and the

potential utilization of a 50 Hz tracker implementation is

presently being studied by certain industry sectors for

space application (5). Therefore, this effort will pursue

the Implementation of the current simulation software at a

50 Hz rate and analyze the potential benefits. 4

1.3.3 Scenario Sensitivity Parameters. This research

F. shall perform a sensitivity analysis to assess the

10 4
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' ", .r applicability of this tracking algorithm to a possible range

of application scenarios. This will encompass developing

the relationships to vary pixel size, target range, target

type, and noise characteristics. Previous research by both

Netzer (14) and Tobin (19) had addressed the sensitivity of

the filters to range; however, the intent of this objective

is to develop a relationship with the parameters of pixel

size, range, noise characteristics, and target type and

evaluate tracker limits as a function of these variables.

1.3.4 Target Trajectory Sensitivity. A comparison of

the response of the filters to target trajectories other

than those for which the filters are tuned is conducted.

The five elemental filters in Tobin's multiple model filter

algorithm (19) had experienced favorable results against a

straight and level trajectory, a constant 2-g, 10-g or 20-g

pull-up maneuver with the maneuver initiating in an inertial

x-,y- plane parallel to the FLIR plane, a similar constant-g

maneuver but ending in a straight trajectory, and a constant

turn-rate maneuver initiating in an inertial x-,z- plane

perpendicular to the FLIR plane. This effort will consider

the implementation of a constant turn-rate maneuver similar

to the constant pull-up maneuver initiating in the x-,y-

plane and rotate the trajectory by 45° . This maneuver is

expected to show the effects of tracking a target whose

initial trajectory is as dynamic in the x-direction as it is

In the y-direction, ratther than singling out one of the

'Ii
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directions for initial dynamic behavior. Another trajectory

modification that will be considered is to represent the

target's acceleration at the onset of the turning maneuver

as an increasing function of time rather than as a

physically unrealistic step input (as had been done In the

past). The target acceleration rate will be modeled as

a ramp function with the maximum attainable acceleration

occurring after five sample periods.

1.3.5 Rotating Rectangular EQY. An investigation into

the feasibility of implementing a rotating rectangular field

* of view into the multiple model adaptive filter structure is

performed. This field of view is considered to rotate in

such a way as to align the "elongated" side with the current

estimate of the target's acceleration. The benefits of

maintaining lock on a target that can accelerate In

arbitrary directions forms the basis of this evaluation.

1.4 Overview

* This chapter has presented a synopsis of the effort

performed to date in developing a viable tracking algorithm

as well as described the intentions of the areas requiring

continued study. Chapter II Introduces the filter theory

concepts that will be needed to understand the algorithm's

theoretical foundation. Chapter III provides the develop-

inent of the various truth models and Chapter IV discusses

the aspects of the two possible filter-assumed dynamics

models, a Gauss-Harkov acceleration model and a constant

12



turn-rate dynamics model, In addition to the measurement

model employed. Chapter V discusses the tracking algorithms

along with discussing the tools used for gathering

statistics and describing field-of-view processing

characteristics. Chapter VI presents the results of the

various analyses conducted, and Chapter VII presents the

suwmmary of results and suggests areas f or further research.

'13



II. Filter Theory

The intent of this chapter is to highlight the

mathematical forms of the Extended Kalman Filter (EKF) and

the Multiple Model Adaptive Filter (4MAF). A basic

understanding and knowledge of linear Kalman filtering

techniques is assumed (9,10).

2.1 Extended Kalman Filter

The extended Kalman filter (BKF), for which a complete

derivation appears in (10) and is summarized in (19), is an

algorithm that allows the states of a nonlinear stochastic

system model to be estimated. Unlike the linear Kalman

filter (LKF), the extended Kalman filter requires the Taylor

seles expansion of nonlinear system dynamics and measurement

equations at the desired sample intervals. These Taylor

series expansions neglect the effect of second and higher

order terms, which results in the EKF not complying with the

optimality criteria inherent in the linear Kalman filter.

The system state relationship for the BKF takes the form of

the following nonlinear stochastic differential equation: -'-

xt) = [fx(t),_(t),t) + G(t) Y(t) (2-1)

where:

(t) - n-dimensional state vector S

W *t) - r-dimensional control input vector

t - time

fI - n-dimensional nonlinear system plant dynamics S

vector function

14



(t) - n x s noise distribution matrix

V(t) = s-vector zero-mean, white Gaussian noise
process of strength Q(t); independent of x(t o )

As compared to the linear Kalman filter, f[x(t),uq(t),t]

replaces [E(t)x(t) + P(t)y!(t)), but similar to the LKF is I
the assumption that the initial condition is assumed to be a

(Gaussian) random n-vector with mean y o and covariance o.

The discrete-time measurements can be represented in the
I

form of the following nonlinear vector function:

ti)= h[X(ti),ti) + v(t i ) (2-2)

where:
-'.

z(t i ) = m-dimensional measurement vector

h.] = m x n nonlinear vector function relating
*i the measurements to the states

v(t I ) = m-vector process of discrete-time zero-mean,
white Gaussian noise with covariance R(ti);
independent of both R(t o ) and w(t)

The extended Kalman filter measurement update incorporates I

the measurements via the following relationships:

STti Tti ) + R ti1 - ' (2-3)

+(t) = x(ti ) + K(ti)lli - hX(ti ),ti]} (2-4)

Uti +  = __t i  )t -) Klt l t il _lt I  ) (2-51)-'

where:

K(ti) = Kalman filter gain at time ti

x(t i ) = estimate of g at time ti

P(t i ) - n x n state error covariance matrix

15'-" , w" ° ' ,,,



S(tj) Intn immediately prior to incorporating

(tj + instant Iinmediately after Incorporating
measurements at time tj

The 1l(ti) matrix is defined as an a x n matrix of partial

derivatives of b! with respect to the first argument,

evaluated along the nominal trajectory (10:41):

Wjti) - IKI~ti ,tj) 1 (2-6)
CILuK(tj-)

Utilizing the results of the measurement update equa-

tions for x and E as defined In Equations (2-4) and (2-5) as

the Initial conditions for the propagation cycle from ti to

ti~l, the following relationships apply:

X~~~t/ti)~~~ zi.t/jattJ(-7)

T
P~t/ti F~t)F T/t)+Ptt) t

+ G(t)Q~t)g (t) (2-8)

where

(t/ti) =estimate at time t given measurements through

time ti

with the initial conditions:

E(ti/ti) = R(ti +) (2-10)

The f.(t) matrix is defined as the n x n matrix of partial

derivatives of f with respect to its first argument,

c,-:.evaluated along the nominal trajectory (10:41):

16
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"'At) " E4(t/t),til 
(2-11)

ax x-x(t/t i )

Note that one difference between the linear Kalman filter

and the extended Kalman filter is that the equations for

propagating and updating the estimation error covariance

matrix are coupled to the state estimate relations. This

relationship precludes the precomputation of the covariance

and gain matrices until the state estimates and measurement

values become known at specified sample times.

2.2 Multiple Model AaDtive Filter

In any given real world application, one can predict

only to some degree of accuracy all of the possible scena-

* rios of a deterministic target model, thus allowing the idea

of uncertainties in the model. The Kalman filter's ability

to achieve a high level of performance against a wide

variety of situations would require the matching of the

uncertain parameters of the dynamics model to the dynamics

of the target. However, some of these parameters are

changing in time and the system designer does not always

have a priori knowledge of the values of parameters that

provide optimal performance. One means of overcoming this

limitation is to incorporate Multiple Model Adaptive Filter

(MHAF) techniques as developed by (8,14,18,19,10).

The MMAF structure can best be developed (10:129,136)

by considering a first-order, linear, stochastic

17
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differential equation for a given time-invariant system

model of the form:

'.p

20t) a E(ax(t) + t) + _(&)X(t) (2-12)
4,

and noise corrupted, discrete time measurements as:

z(ti) - Hlf(@L)(tj) + _(t 1) (2-13)
.- 1'

where:

x(t) = n-dimensional system state vector

'ut) - r-dimensional deterministic control vector

w(t) - s-dimensional discrete-time white Gaussian,
zero-mean noise vector process of strength -%

(ti ) = m-dimensional measurement vector

vlt i ) = a-dimensional discrete-time white

Gaussian, zero-mean noise vector process
.. of covarlance 861.

a = uncertain and/or dynamic parameter vector

F(a) = n x n system plant matrix V-a

B(a) - n x r input distribution matrix

Q(a) = n x s noise distribution matrix

H(a) - m x n vector relating the measurements to
the states

To represent a target with K significantly different sets of

dynamics characteristics, It is necessary to discretize a

* into a set of K finite vector values, 4.1, &2, -.-, aK. The

MMAF consists of a bank of K independent Kalman filters

which are processed in parallel, in which each filter is

tuned for a specific target dynamics characteristic

16

la- | . .. . I -i - - ) : " d la' , :



. . o, . , b , . • . .. ".M% 79p . " . . . .I - . -- - --- -". 7-. --
- 

.

determined by the appropriate ja, for k- 1,2, ... , K. At

discrete sample times, the residuals of each elemental

filter are used to calculate the conditional probability

that IL assumes the value of &jk associated with that

particular elemental filter, conditioned on the observed

measurement history. This conditional probability, called

the hypothesis conditional probability and denoted Pk(ti),

identifies the elemental filter with the greatest

probability of best performance at a given time.

The state estimate of the MKAF, x af(ti ), is the

probabilistically weighted average of the elemental bank of

filters (19:14):

^ K
xamaf(tl ) = r Pk(ti) xk(ti + ) (2-14)

j b k-140

This form of filter structure, as depicted in Figure 2.1, is

referred to as the Bayesian MMAF (10:132), where the state

estimate consists of weighting all k filters using the

hypothesis conditional probability function:

f (zi lak,ZLi-l)" Pk (t-l)
z(ti ) l ,_( - )Pk(ti) = (2-15)

K f (zi eaj, ZI-1I) -pPj (ti-1)
E L(t1 ) MLa,;(ti_ 1 )

J-1

where:

f (11 likZi-1) exp 1.)}
z~tila_ ~tl1)  =. - (2-16)

(2)"/2 1Mk(ti) 11/2

19
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T 1I: . . 1- - -1/2)L (t )Ak (ti)Lklti )  (2-17)..

Ak = k-th filter's computed residual covariance

lik(ti)PRk(ti )Iljj(ti) + Ek(ti) (2-18)

ILk(ti) - k-th filter's residual

S(it 1 ) - Iik(ti)Ek(ti)) (2-19)

and

= parameter value assumed in the k-th filter

k (ti1 ) = k-th filter's computed state error covariance
before incorporating the measurement at time ti.

l_ 1 1 - measurement history up to time t_ 1  S.,

5,,

I ."5

-'

based on a -

Kalman filter srin A

aKa

-Ka

based on _K ,
.... .. ... .

" ~ A P 2 PK

conditional probability 'Y
computation

, .°

o.

Figure 2.1. ayesian Multiple Model Filtering Algorithm,.
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As is evident from gquation (2-15), the numerator Is

the k th filter's product of the previous hypothesis probabi-

lity and the conditional probability density of the current
Ith

measurement &(t 1) provided that the kt h filter's assumed

parameter value ft and the previous measurement history

;Z(ti- 1 ) are known. The denominator is the sum of similar

products for all K filters in the bank; this Implies that

the filter out of the K filters that produces the smallest

squared residual relative to the filter-computed residual
a.w

covariance best matches the real world situation (10:17).

The filter structure of Figure 2.1 conveys that the K

filters in the bank process their estimates and residuals in

parallel. It is important that the residuals from the

"best-matched" filter be distinguishable from those of the

mismatched filters. Failure to obtain such distinction

can cause inappropriate assignment of large probabilities

to filters based on incorrect models, leading to poor

performance. To preclude such possible performance degrada-

tion, each filter in the bank should be tuned for a unique

target trajectory to match its internal dynamics model,

since the filter which represents the closest "match' to the

true target dynamics will produce much smaller residuals

relative to the filter-computed covariance than the

mismatched filters. In addition, to prevent the possibility ..

of masking the distinction between the residuals of the

filters based on different target dynamics models, the addi-

21

_.



tion of excessive amounts of pseudonoise to compensate for

' " model inadequacies should be avoided (10:133;14:18).

The computation of the MIAF conditional covariance

matrix takes the following form 119:17):

K a '.
+ K + T +

Emmaf(ti ) E Pk(tl)Pk(ti + ) + k(ti ). (t+)J (2-20)
k-1

where:

Yk(t) - k(tj + , - a4Maf(ti )

Pk(ti) = k-th filter's conditional hypothesis
probability

Ek(tj ) = k-th filter's state error covarlance
matrix after incorporating the measurement

The values of Pmmaf(ti + 1 cannot be computed a priori as can

be accomplished for the the case of a linear Kalman filter

oo *(as, for instance, each elemental filter) because the values

of both Pk(ti) and xmmaf(ti + depend upon the measurements

taken through time t i .

Finally, to prevent a mismatched filter's pk(ti) value

from converging to zero, an artificial lower bound is

imposed on each of the filter's hypothesis conditional

probabilities (10:135;14:18). Without the lower bound, once

a conditional probability reaches zero, or essentially

reaches zero, it remains zero (or essentially zero) for all

time, since it is a function of the conditional probability

at the previous time, as seen in Equation (2-15). This

effectively impedes the contributions of that filter's

estimates for all future times in the KHAF structure and

22
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can degrade the ability of that filter to respond to future

changes in the true parameter values. The loss of a filter

due to the oversight of not placing a lower bound on its

probability value could degrade the MHAF performance if the

target dynamics model at a later time matched the model for

which the probability was allowed to reach zero, thus

preventing it being weighted in the filter structure. The

establishment of a lower bound of Pk(ti)min = 0.001 (8:19)

in past efforts is continued in this study.

2.4 Summary

This chapter has presented discussions of both the

extended Kalman filter and the concepts underlying multiple

model adaptive filtering techniques. The intent of this

4" discussion is to provide a basic understanding of the theory

that motivates both the tracking algorithm and the filter

model in the ensuing chapters.

2.
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, , ".:" -111. Truth Model Develooment ,

3.1 Introduction

The truth model of any real world filtering and/or

control application is the most complete mathematical

representation available to the system designer. This

truth model becomes the standard with which to evaluate the

overall performance of the filter, which is discussed in the

next chapter. This chapter describes the characteristics of

the truth model as utilized in previous ground-based tracker

studies and most recently in (19). However, the modeling of

hardware bending and vibration effects is included to repre-

sent additional detector perturbations inherent in airborne

and other moving-base tracking systems.

For a given tracking scenario, the physical phenomena

of target dynamics, FLIR system vibrations, and atmospheric

Jitter can cause apparent motion between the target and the

tracking sensor, where apparent implies some offset from the

actual position. Therefore, the location of the centroid of

the sensed target image on the FLIR detector plane is a

combination of true target motion, a corruption due to optL-S...
cal hardware bending and vibration, and atmospheric Jitter

caused by infrared wavefront distortion. If xc represents

the a imuthal offset distance of the apparent target

centroid from the center of the FLIR plane FOV, then the

apparent location of the centroid as detected by the FLIR

array is as follows:

2.
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xc xt + xa +xb (3-1) ,

where:

xt M xC component due to actual target dynamics

xa - xc component due to atmospheric Jitter

xb = xc component due to bending/vibration

and all components are measured in pixels.

Since the PLIR plane is a two-dimensional array, an

equivalent y-direction relationship to Rquation (3-1)

applies. The truth model that describes this simulatioi

corresponds to a two-state position model augmented by both

a six-state atmospheric jitter model and a four-state

bending/vibration model. Subsequent sections will describe -N

the dynamics models, followed by the measurement model,

target model, and the simulation model which allows computer *1.

simulation of the actual tracking scenario.

3.2 Dynamics Model

The twelve-state system dynamics model can be

described by the following linear, stochastic differential

equation:

Tr(t) = T&T(t) + &yTq(t) + _wl(t) (3-2)

where:

FT  12 X 12 time-invariant truth model system
plant matrix

XT(t) = 12-dimensional truth model state vector
comprised of 2 target position states,
6 atmospheric states, and 4 bending/vibration

.. _-states

25



_a T = 12 X 2 time-invariant truth model input 1

distribution matrix

IATMt - 2-dimensional truth model deterministic
input vector

xT(t) 12-dimensional truth model, zero-mean, ",

white Gaussian noise vector process with
autocorrelation function:

E(W(t)wT~ (t'O71) Qr~6(,r) (3-3)

The solution to the stochastic differential equation in a

discrete-time sense takes the form (Notice that the "T"

subscript denoting truth model has been dropped for

convenience on the following developments):

-X~i)+ -Ad-4(ti) + Vd(ti) (3-4)

where:

X(ti) 12-dimensional discrete-time state vector

4'-state transition matrix computed from rT~ over

the sample period At

At =ti+i - ti

ti .i1

ti

md~ti) 2-dimensional discrete-time input vector

_w(ti) =12-dimensional discrete-time, zero-mean

white Gaussian noise process of covariance:

Idt(l~,r Q I tT(ti+i,71d (3-5)

ti

26



~. :.Q~:Recall that the twelve-state discrete-time truth model
vector is the result of augmenting a two-state target

* dynamics vector, &t(ti), a six-state atmospheric Jitter

vector, xa(ti), and a four-state bending and vibration

vector, x,(ti). The partitioning of the truth model

dynamics system model solution the takes the following form:

Kt(ti+1) ft 2x2 9 Q2x6 9 ~2x4 Xt(ti)

xa~~ti~~i) -0x a 6x6 I 06x4 X~i
- - - -- - - - - - -

K 2til-Q4x2 9 Q4x6 t *b 4x4 Kb(ti)

- ldt 2x2 Q.2x1

+ 9-6x2 !Vdt(ti) + -wda(ti)6xl (3-6) .

Q4x2 F-db(ti)4xl

where:

)= 2-dimensional target dynamics state vector

xa 6-dimensional atmospheric Jitter state vector

mb 4-dimensional bending/vibration state vector

-. gdt(ti) *2-dimensional discrete-time deterministic
Input vector

~dati -6-dimensional discrete-tim white Gaussian

noise related to atmospheric states

Ydb(ti) =4-dimensional discrete-time white Gaussian
-* -noise related to bending/vibration states

.5 27



Realizing that the block diagonal form of the state transi-

tion matrix allows independent evaluation of each particular

model, the following subsections develop the propagation

relationships for the target, atmospheric Jitter, and the

bending/vibration models which are ultimately incorporated

into Equation (3-6) for the entire system propagation

relationship.

3.2.1 Target States. The truth model for target

dynamics takes the form of a continuous-time deterministic

model representative of the entire range of target

trajectories, from highly maneuvering to very benign. Since

a FLIR sensor is of primary interest in tracking the target,

the elevation, a(t), and azimuth, 8(t), angles with respect

S. to the center of the POY on the two-dimensional FLIR image

*. plane become the measurement parameters by which true target

location is determined. The target states, therefore, are

propagated forward in time with respect to the flat surface

approximation a-B plane, where the surface is actually part

of a huge sphere.

The u-B plane, as described by (7:36; 18:11-16; 19:26)

consists of an array of IR sensing pixels and is perpendicu-

lar to the sensor-to-target line-of-sight vector. If the

target is far from the FLIR sensor, the FLIR azimuth and

elevation angles become proportional to the linear transla-

tional coordinates xt and yt of the target. Figure 3.1

depicts the relationship between the FLIR angles and the
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* Figure 3.1. The O-B Plane

target centroid. If a and a are measured in micro-radians

and xt and yt are measured in pixels, then the proportiona-

lity constant (k) is the angular FOY of a single pixel

which has been 20 micro-radians/pixel in previous efforts

and developed by Harnly and Jensen (4:33).

If aand aare considered constant over the filter's

sample period t seconds In length, then the change In the

target Position from one sample period to the next can be

described In discrete form by:

1'.. 7 0 7 , F X ~ t +73 7

-ttil L0 1, Y:(tij 29 k~A kitj5(ti)j
'p'I'
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where:

;(ti ) = do/dt, measured in micro-radians/second

8(tj) - da/dt, measured in micro-radians/second
p. i

kp 0.05 pixels/micro-radian
p

At = ti+ I - t i

e

Equation (3-7) represents the discrete form solution of

the stochastic differential equation for the truth model

target states, and thus describes the upper partition of the
Ve

truth model identified in Section 3.2. This type of model

is chosen to fit the state space model form similar to the
€I

rest of the dynamics, and it also allows for easy addition

of stochastic driving terms, if desired.

3.2.2 Atmospheric States. The atmospheric effects as

developed by Mercier (12:73,79) for both the x- and y-

directions of the FLIR can be modeled as the ouput of third

order shaping filters driven by white Gaussian noise and

represented by the transfer function: a-..

Xa(S) KaO1 O22- - - - --- ( 3-8 )
Wa(s) (s+W 1 ) (s+w 2 ) 2 .

where:

Xa = atmospheric state shaping filter output

- zero-mean, unit strength, white Gaussian noise

Ka = atmospheric RMS adjustable gain \,;

- break frequency, 14.14 rad./sec.

(d2 - double-pole break frequency, 659.5 rad./sec.

S .. . .. .



Phase front distortion of the IR radiation waves due to

atmospheric disturbances causes translational shifts on the

FLUR Image plane, called "litter*. This atmospheric Jitter

perturbation Is devoid of directional dependencies;

therefore, the modeling of the FLUR plane effects in both

the x- and y- directions can be treated separately and iden-

tically, and then augmented together to form the atmospheric

system description. The effects can be described by the

stochastic differential equation:

where:

mt)= six-dimensional atmospheric state vector

Ea-atmospheric time-invariant plant matrix

4 6 a(t) - six-dimensional, zero-mean, white Gaussian

noise process of strength Q

When the state vector and the plant matrix are

expressed in Jordan canonical form (12:212), the Q& matrix

4- appears as (19:31):

4- 2
01Q2 02 0103 0 0 0

22
023203 03 0 0 0

0 0 001~2(3-10)

0 0 0 0102 022 2

0 0 0 0103 0203 032

where:
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2 201 - (KGW1 2 )/((A-C 2 )
" " OQ2 - -01

2|

Q3 z (KWcw2
2 )/(WI-G2 )

The truth model's center partition in Equation (3-6)

is formed by representing Equation (3-9) in discrete form.

The statistics of the discrete-time noise covariance can be

described by the following integral:

Qda ta (r)QataT (r)d r  (3-11)

0

where:

Qda 6 X 6 atmospheric discrete-time noise
covariance matrix

!ta(-r) = 6 X 6 atmospheric state transition matrix
associated with ra of Eq. (3-9)

,%.

and the 6 X 6 atmospheric state transition matrix forms the

center partition of the 12 X 12 truth model state transition

matrix. The atmospheric state transition matrix has been

developed and can be shown to be of the form (19:32):

- At
e 0 0 0 0 0

-wd2At -w 2At
0 a Ate 0 0 0

-u,'2 At
0 0 e 0 0 0

ta(At -(sAt (3-12)
0 0 0 e 0 0

-G,2 At -G2At
0 0 0 0 e Ate

At %t
0 0 0 0 0 e
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3.2.3 Mechanical S . The modeling of the

mechanical bending/vibration effects is based on a report

by R & D Associates (15) that was prepared for AFWL

concerning dynamic modelling for space based structures.

Figure 3.2 depicts the response spectrum for the x-direction Z

line-of-sight for a particular satellite structure and the

approximated curve to implement a reduced-order model that

is representative of this type of response. The effects due

to the bending and vibration of the mechanical structure of

the optical equipment are developed in Appendix A. Since

the effects are similar in both the x- and y-directions of

the FUIR, both directions can be modeled Identically by

means of a second order shaping filter driven by white

Gaussian noise and represented by the transfer function:
2I

xb(s) Kbu~n= 2 n2  (3-13) ..
- 2 2 $s+Wwb(s) s + 2 ns + -.

where:

xb mechanical state shaping filter output

vb = zero-mean, unit strength, white Gaussian noise
with an autocorrelation:

E(wb(t)wb(t-Tii = Ob d(t-r); Ob - 1 (3-14)

Kb - gain adjusted to obtain the desired root mean
square (RMS) bending/vibration output

= damping coefficient, -. 15

wn natural mechanical frequency, x rad./sec.

A closer approximation to the low frequency spectra of

Figure 3.2 can be obtained by representing each direction as

a sixth order system versus a second order; however, twelve
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Figure 2.2. Response Spectrum for LOS x-direction.

states versus four for the two axes was deemed as beyond the

point of diminishing returns for a first-cut analysis, and

the modeling of the fundamental frequency effect of bending

was determined to be sufficient enough to describe the

effect. The modeling of the effects in both the x- and y-
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directions can be treated independently and augmented

together to form the mechanical system description. These

effects can be described by the stochastic differential

equation of the following form:

Xb- t )  EbXb(t) + Qblb(t) (3-14)

where:

xb(t) =four-dimensional mechanical state vector

Eb - time invariant mechanical plant matrix

yb(t) = two-dimensional, zero-mean, white Gaussian d.

noise process of strength Qb - I

,b - 4 X 2 noise distribution matrix

. As developed In Appendix A, the Qb matrix is shown as:
.0

Qb (3-15)

0o 1

The truth model's lower partition in Equation (3-6) is

formed by representing Equation (3-14) in discrete form.

The value of the discrete-time mechanical noise covariance -

can be described by the following integral (9:171):

/ _r ) G_ l>gbT!b T (S)d (3-16)
tb :::d

0

where:

Qbd 4 X 4 discrete-time mechanical noise covariance
matrix

tb 4 X 4 mechanical vibration state transition
matrix associated with fb of Eq. (3-14)

'- sample period, ti+1 - ti
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and the 4 X 4 mechanical vibration state transition matrix

forms the lower partition of the 12 X 12 truth model state

transition matrix. The mechanical state transition matrix ".

as developed in Appendix A results in a 4 X 4 block diagonal

matrix of two identical 2 X 2 blocks with the following form:

$'Obl $b2 0 0

Ob3 b4 0 0 -17
= (3-17)

0 0 Obl $b2 -

0 b 3 Ob4 -,

where:

Ol = exp( -ObAt)[cos(Wb,6t) +  (ab/b )s in ((bAt) I

b2= exp-obAt) I (l/Wb)sin(GJb6t) I

2Ob3 - exP(-ffbAt){-I1 + (ab/d)llsnbAt) I.

Ob4 = exp(-abAt)(cOs(wbAt) - ( b/wb)sin(dbAt) I

b = real part to the characteristic equation of
Equation (3-13)

Wob imaginary part to the characteristic equation of
Equation (3-13)

3.3 Measurement Model

The measurements accessible to the tracking algorithm

represent the average intensity of target and background

radiation incident on the FUR array of detector elements.

The measured IR image, or intensity function, consists of a

collection of information from the target IR radiation,

background noises, and FUR sensor noises. Previous

research (18:11-20) has determined that single target

hotspot patterns could be modeled as a bivariate Gaussian
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function with constant-intensity contours when describing

distant targets. This bivariate Gaussian intensity function

can be described by

IIxy, Xpeak(t),Ypeak(t)} - Imaxexp-0.5((X-Xpeak)(Y-Ypeak)J
-1 1  T (-8

(P-B]-1((XXpeak)(Y-Ypeak)i (3-18)

where:

Imax - maximum intensity of the hotspot

(Xpeak,Ypeak) = coordinates of the centroid of the
apparent target intensity profile on the
image plane, measured in pixels

x,y = spatial coordinates calculated relative to
the center of the tracker FOV.

2
PU= 2 X 2 matrix whose eigenvalues (av 2 and

U.- ) define the dispersion of the
elliptical constant intensity contours in
the a-A frame. The elgenvectors of P8

1. define the principal axes of the bivariate
distribution.

Although single hotspot IR sources can be represented

by bivariate Gaussian distributions, targets with multiple

hotspots cannot. Figure 3.3 shows the FLIR plane intensity

profile for a three hotspot target (14:35). The centroid of

the apparent target intensity profile cannot be represented

as a Gaussian distribution even though the individual

hotspots are modeled as Gaussian with elliptical constant-

Intensity contours. Furthermore, the intensity measurement

provided by each pixel corresponds to the average intensity

on that pixel resulting from the effects of the target

intensity function, the spatially correlated background

' . noise, and the PLIR sensor noise.
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(xpeakm,Ypeakm) = coordinates of maximum intensity point
of -th hotspot

njk(ti) = effect of sensor errors on pixel ik

bjk(tI) = effect of background noise on pixel jk

Temporally and spatially uncorrelated thermal noise and

dark current in the IR sensitive pixels comprise the sensor

error, njk(ti) (19:35); whereas the background noise,

bjk(ti) , can be represented as a spatially correlated noise.

This spatially correlated noise is modeled as an exponen-

tially decaying correlation pattern with radial symmetry and

characterized by a correlation distance of approximately two

pixels (4:37,40). This is simulated by maintaining non-zero

correlation coefficients between pixels separated from each

other by two pixels or less in all directions (19:35).

3.4 Target Model

A three hotspot planform, with a coordinate frame that

is discussed in Section 3.5.1, is depicted In Figure 3.4.

It is considered to represent the target of interest for

this analysis. The target's angle of attack and sideslip

angle are assumed to be zero in order to maintain the align-

ment of the semi-major axes of each of the three elliptical

IR constant-intensity contours with the target's velocity

vector. This enables a simplistic simulation of the space

geometry without substantially degrading tracker performance

analysis (19:38).
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e u n i t v e c t o r i n v e l o c i t y
direction

0v
perpendicular
to velocity

vector

Hass Centroid

Displacements of Hotspots From the Mass Centroid Along

t -v, pv and Sppv Directions

H o t a p o t p v (m e t ) 1 p v ( m e t ) pp v ( m e t )

1 1.0 0.0 0.0

2 0.0 0.5 0.0

3 0.0 -0.5 0.0

Figure 3.4. Target Hotspot Distribution

3.4.1 Target Trajectories. The target trajectories

avaialble in this study include the four trajectories used

by Tobin (19:38,41), and two additional target scenarios as

shown in Figure 3.5. Each is described as follows:

Trajectory QM. This trajectory Is a constant

velocity, straight and level flight with a simulation time

of five seconds. The inertial velocity remains in a plane

parallel to the @.,-_e, plane. Note that it is not constant

velocity when projected onto the FLIR image plane because

the tracker is a rotating frame.
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Tralectoty TWO. This trajectory involves a constant

" ".?' 10-9 or 20-9 pull-up maneuver that is represented by a step

change in the acceleration at t=2.0 seconds and lasts for

the remainder of the 5 second simulation. The target's turn

is portrayed by a constant-magnitude angular rate vector

oriented parallel to the negative ez axis.

Trajectory Three. This trajectory is similar to

Trajectory Two with the exception that at t=3.5 seconds, the

constant-g pull-up maneuver abruptly terminates and the

pitch rate is set to zero for the remainder of the 6.67

second simulation. This longer simulation interval allows

the tracker time to settle down and corresponds to 200

sample periods of duration.

TraJectory Four. This trajectory is similar to

Trajectory Two with the exception that the angular rate

vector is parallel to the ey axis, which simulates the

target turning towards the tracker.

Trajectory Five. This is a Trajectory Two rotated at

an angle of 450 with respect to the FLIR plane. The intent

of this scenario is to evaluate how well the tracking

algorithm performs against a maneuvering target for which

the tracking algorithm is not tuned (the appropriate

direction of elongated fields-of-view, to be discussed in

Section 5.4, would be neither the x- nor the y- direction in

the FLIR image plane).

Trajectory Six. This trajectory is identical to

Trajectory Two with the exception that the acceleration to

41
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start the pull-up maneuver is allowed to dvlpas a

positively increasing ramp rather than as a step change.b

Previous studies had modeled the accelerated turns with a

step change in acceleration, a rather harsh maneuver for the

tracking algorithm to maintain lock and rather unrealistic -

for physical targets to perform. -

3.5 Simulation Space Model

The simulation space model allows the simulation of the

FLUR tracker operation on a digital computer. This model

allows for the realistic target trajectory propagation in

three dimensional space and provides a mathematical means of

* describing the target's image and velocity vector with -

respect to the FLUR image plane (19:36). Both the FLUR

plane velocity projection and the FLUR plane target image

projection are discussed following the description of the

various coordinate frames.

3.5.1 CoordinateFrames. The coordinate frames used

for the FUIR tracker digital simulation include the target

frame, the inertial frame, the a -B-r frame and the a-B

(FLIR image) frame. The origin of each frame and the

orientation of the reference axes are as follows:

Target, Frame:

Origin: target center of mass

Axes: Iv - along velocity vectorI

gv- out right side of target,
perpendicular to ev
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- vector completing right hand
coordinate set, perpendicular to
both e v and 2-pv

Inertial Frame :

Origin: location of PLIR sensor V

Axes: Lx - due north, tangent to earth's
surface, defines zero azimuth

y inertial 'up' vith respect to
a flat earth approximation

q- vector completing right hagd
coordinate set, defines 90
azimuth

Note: Azimuth (a) Is measured eastward from
ex. Elevation (B) is measured from
the plane defined by Ux and ez .

a - 13 - r Frame:

Origin: target center of mass

Axes: er - coincident with the true
_ . sensor-to-target LOS vector

e ,e.B define a plane perpendicular
to e, rotated from the
inertial e and e by the
azimuth and eleva ion angles

a - 3 I.E. Image) Plane:

The FLIR image plane by which the sensor
measurements are taken comprise this plane.
The azimuth and elevation angles can be
considered the linear translational coordinates
x and y. Observing the FLIR plane along the
LOS vector, x is chosen to be positive to the
right and y is positive down. This choice of
coordinates maintains a right-handed coordinate
set with the target's range measured positive
away from the sensor.

Both the inertial and a-8 frames are depicted in Figure 3.1,

whereas the target frame is illustrated in Figure 3.3.
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3.5.2 FUR Plane Velocity Projecton The target
* .. .

'  
"

inertial velocities are transformed into the deterministic

azimuth velocity, ;(t), and elevation velocity, 8(t), in the

truth model differential equation, Equation (3-2), by

projecting the inertial velocities onto the FLIR image plane

based on the geometry of Figure 3.6 which was utilized by

Loving (8:27,29). From Figure 3.6(b), a can be derived by

the relationship:

a(t) tan -  (z(t)/x(t)J (3-20)

and fi(t) can be derived from Figure 3.6(c) by:

B(t) - tan (y(t)/rh(t)] (3-21)

where:

to. (x~2 2)1/2
rh(t) horizontal range; (x + z

However, the variables of interest for velocity projections

are e(t) and 8(t). Therefore, taking the time derivative of

Equations (3-20) and (3-21) yields:

x(t)vz(t) - Z(t)Vx(t)
a(t) =t) z2 (t) (3-22)

and

rh(t)vy(t) - y(t)rh(t)

0(t) 2 (3-23)
-p2c (t) .

where:

Vx, vy, vz = target velocity components in the inertial

x , @.y, and V. directions, respectively
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x(t)vx(t) + z(t)vz(t)
rh(t) (3-24)

rh(t) 
-4""

Equations (3-22) and (3-23) define the deterministic input

vector In the truth model difference equation, shown in

Equation (3-6), where Vdt(tj) = (G(tj),fltl

3.5.3 FLIR Plane Target Imaq ProJectIon. The

projection of the target's hotspots onto the FLIR image

plane corresponds to the the detection of the target by the

array of pixels. Although the hotspots are assumed to lie

in the plane formed by the wings of the target, the

orientation and location of the hotspots on the FLIR image V

plane changes as the target rotates and translates with

respect to the IR sensor. Figure 3.7 illustrates the

geometry of the target with inertial velocity vector assumed

e

Target

a..

Sensor

Figure 3.7. Target Image Projection Geometry

4'7
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" to project through the nose of the target, the q-B plane

perpendicular to the true LOS from the tracker to the

target, and the origin of the a-B plane coinciding with the

detected target center of mass. The image of the target as

perceived by the IR sensor changes as the target changes

angular orientation relative to the tracker or moves farther

away from or closer to the FLIR. The current image size of

the target with respect to the largest planform image, or

reference Image, is given by the following (12:11-24):

apv - Opvo (ro/ri (3-25)

and

v = (ro/rJ(Gpvo + (Ovo -qpvo)cOsCI (3-26)

-, " pv41 + [(vlos)/v)(AR - 11)

where:

• vo, Opv o a target hotspot dispersions along tv and 4v
in the target frame of the reference image

.v' qpv - target image's current dispersions

ro - sensot-to-target range of reference image

r - current sensor-to-target range

v - target inertial velocity vector

v magnitude of v

--_los - component of y perpendicular to the LOS
vector (projected onto the *-a plane)

,"Uos magnitude of v.1los * + *2 1/2

. angle between v and the a-B plane

AR aspect ratio of reference image, ovo/apvo
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Since the ultimate goal is to define the target image in

terms of the FLIR plane coordinates, a transformation from

the target frame coordinates to the a-B coordinates can be

expressed as:

cone -sine[lF~~ li x (3-27)
where LsCine coneJ target frame

where :

0 - angle between S and Vjdos (see Figure 3.7)

The dispersion matrix can be determined from the following:

* E : T P TT (3-28)

where the dispersion matrix is utilized in the measurement

model in Equation (3-18).

3.6 Summary

This chapter has introduced several models which depict

the real world target tracking environment. The processes

that have been modeled include: target dynamics,

atmospheric jitter, mechanical bending/vibration, and

background and FLIR noise. Deterministic target

traJectories were described to provide the baseline for

testing the tracker against realistic tracking scenarios.

Finally, a simulation space was presented In order to allow

the simulation of the tracking scenario on a digital

computer.
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I

IV. Filter Models

4.1 Introduction

This chapter describes the filter models employed in

the lEA? structure discussed in Chapter II. Section 4.2

discusses the reduced-order dynamics models: the Gauss-

Markov acceleration model and the constant turn-rate

dynamics model, and Section 4.3 discusses the enhanced-

correlator/linear-measurement model.

4.2 Dynamics Models

Two distinct dynamics models are presented for the

purpose of comparative analyses in the MMAF. Both models

represent a reduced-order, eight-state vector to estimate

the target's position, velocity, and acceleration, and the

atmospheric Jitter in two orthogonal directions (x,y) on the

FLIR image plane. The filter state vector for each of the

two models is represented as:

XF xt

x2 yt

x3 X

x4  vy
(4-1)

x5 ax

x6  ay

x 7  Xa

x8 
Ya 
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where:

xt,yt a target position, x- and y-direction

VxVy = target velocity, x- and y-direction

axay - target acceleration, x- and y-direction

xa,ya = atmospheric Jitter, x- and y-direction

Note that the atmospheric Jitter is represented by two

filter states rather than six and that the filter neglects

the modelling of the bending/vibration states as presented

In the truth model of Chapter III. The filter's atmospheric

Jitter model captures the primary characteristics of the

Jitter's power spectral density while at the same time

neglecting the high frequency effects. The omission of

modeling the bending/vibration states within the filters is

t *be presented as part of the analysis on filter performance

in Chapter VI.

Although the state vectors that describe the two

dynamics models to be investigated are the same, the

description of the target's acceleration process is uniquely

defined for each model. The linear filter of Section 4.2.1

models the target's inertial acceleration as a zero-mean,

first order Gauss-Karkov process, while the nonlinear filter

of Section 4.2.2 models the target's trajectory as described

by a series of concatenated constant turn-rate segments.

4.2.1 Gauss-Narkov Acceleration Model. This dynamics

model, a standard airborne target model not originating In

these references, assumes that the target's inertial
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acceleration can be described as the output of a first-order

lag driven by white, Gaussian noise. Developed by Millner

(13:50,51) and Kozemchak (7:75,80) for the FLUR tracker, it

is well described by the time invariant, linear stochastic

differential equation:

Xf = EFfxf(t) + Qfxf(t) (4-2)

where:

xf(t) - 8-dimensional filter state vector

xf(t) = 4-dimensional, zero-mean, white Gaussian vector

noise process of strength Qf.

0 0 1 0 0 0 0 0

0 o 0 1 0 0 0 0

*0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
E~f (4-3)

0 0 0 0 -i/Trx 0 0 0

0 0 0 0 0 -1/Try 0 0

0 0 0 0 0 0 -1/Tra 0

0 0 0 0 0 0 0 1/Tra

2
2a -x0 0 0

0 2aT 2 /Pry 0 0
0 0 20ra /Ta 0

0 0 0 2a/7-a
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" ~whe re:":

tTX'"rY = correlation tim for the x- and y- target
li acceleration processes"

Ta =correlation time for atmospheric Jitter processes '.

2 2 -ox ,Oy variance and mean-squared value for the -.y x- and y- target acceleration"'

oa  =variance and mean-squared value for the
atmospheric Jitter

The filter state estimate and error covariance matrix -

are propagated forward in a discrete-time sense by the '

following set of equations (9:171,172): .

((ti+l- -kf tlflti+  (4-61 )9

T(At)

Ef(ti+l ) = f(At)-f(t + _f + Qfd (4-7)'"

where: .9"

rXf(t 1 1 = filter's estimate of the state vector

• '. ,,(t i = filter's error covariance matrix
xany-treaceeai

2= vaianc andmeansquard vaue fr th
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Sc.'..- (t 1 ) = Instant before the measurement is incorporated ,4
at time tI

.." (ti+ ) = instant after the measurement is incorporated
at time ti

. (At) = time invariant state transition matrix
associated with Ff for propagation over the
sample period t:

At = tlI - ti

ti+l

0i':  The $_f(At) and Q fd matrices have been determined to be of

the following form (14:47,48):

1( 0 At 0 *15 0 0 0

o I 0 At 0 $'26 0 0 '

0 0 1 0 *35 0 0 0 a,

o 0 0 1 0 *$46 0 0 :
Thf(At) = (4-8) .-,

1 0 0 0 055 0 0 0

0 0 0 0 0 066 0 00 0 0 0 05 0 07 0

0 0 0 0 0 0 077 0

0 0 0 0 0 0 0 188

where:

'15 7X[ At - x(l - exp(-At/rx))"

026 w -(At - -ry(l - expi-At/7-y))

035 -Tx(I - expi-At/Tx))
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#46 - Tryt 1 SXP(-~t/ Y) 1

055 - expi-At/7xi

066 - exp(-A6t/7yl

077 0 088 O Xp(-,dt/7a)

and

01i 0 01 0 015 0 0 0

o 022 0 (124 0 02 0 0

013 0 03 3 0 035 0 0 0

o Q24 0 0144 0 046 0 0
9Qf d =(4-9)

015 0 035 055 0 0 0

0 026 0 ()46 0 066 0 0

0 0 0 0 0 0 077 0

o 0 0 0 0 0 0 (188

where:

2 3 2 3

02 ax 2 ((2/3) -rAt 3 2(TxyAtI 2 47y 3 (,At)exp(-At/TxJl

3 4 4+ 2 7r At - Try xxp(2At/TxJ) +~ 7j I

3 2 3 N

02 -r 27 exp(At/7 + 2- 2Atx A iT- pAt/ TxII+ r

015 r 3x e2x(Cp(-At/ - rAtx + Try x e-2At/ TxJI)

2 3 253
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2 2 2
026 " y1-2ry(At)exp(-At/7 y] - T, exp(-2At/Tyi .1

2 2 2 2:
Q33 - ax 12 x(At) - 3 + 4 expl-At/rx ] -'xexp(-2At/rxJ-

(035 =~ u 2 Crx 2Trxexp1-At/rx1 + -rxexp(-2,At/-rx))

2 2~ 2 2Q44 W Ory (2-dt 3-ry + 4Tr exP(-At/7-Y) -ry exp(-2At/-TJ))

2

Q35 = °x. {rx, - 2r xp[-At/rx] + Txexp-2At/Txl}

Q46 oy ry- 2-ryexp[-At/-ry] + 'ryexp1-2A6t/-ryl}D

2
055 = x2 1 - exp[-2At/rx|l

%2

= °y 2 11 - expI-2At/ryT)

Q77 = aa1 - exp(-2At/ Ta))

Q 8 8 
= (77

The Multiple Model Adaptive Filter estimates are formed

via a probabilistically weighted averaging technique.

Following each propagation cycle, the elemental filter

estimates, x 1 (t+ 1 ) = xt(ti+ 1 ) and x 2 (ti+ 1 ) - yt(ti+)

form the MMAF estimates, x(ti+l and x2(ti+l-)mmaf.

Analogously, the estimates xf(t i ) could also be used.

These estimates can be considered as the control signals

that, if driven to zero over the next sample period, would

drive the FLIR optical centerline at the target.

4.2.2 Constant Turn-Rate Dynamics Model. The constant

turn-rate dynamics model is an alternative to the linear,

first-order Gauss Markov acceleration process, and it is

described by a series of concatenated constant turn-rate
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\ segments (19:55,58). Since this model results in a

nonlinear dynamics model, the extended Kalman filter

propogation equations described in Chapter II are utilized.

The constant turn-rate target acceleration process is

modelled by the following first-order, nonlinear, stochastic

differential equation:

a(t) = -b2v(t) + w(t) (4-10)

where:

d angular velocity of the constant turn

X(t) X a(t)
2 (4-11)

. I(t)

a(t) = 2-dimensional target acceleration vector;
coordinatized in the FLIR image plane

v(t) 2-dimensional target velocity vector;
coordinatized in the PLIR image plane

w(t) = 2-dimensional zero-mean, white Gaussian
vector noise process

This model results in a nonlinear system state equation

of the form of Equation (2-1) when utilizing the state

variables defined in Equation (4-1). The components of

f1x(t),t] are identical to those of Equation (4-3) with

exception to the f5 and f6 components. These two components

are functions of the nonlinear vector function defined in

Equations (4-10) and (4-11). The noise distribution matrix,

.- , is identical to Equation (4-4) and the noise strength

matrix, Qf, can be determined via an iterative tuning

process depending on the simulation scenario parameters.
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: .->;._ The state estimate and error covariance matrix are

propagated between sample periods by employing the extended

Kalman filter equations defined in Section 2.1. The

sensitivity matrix, E, of Equation (2-11) is described by

the partial differential matrix equation:

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

af 0 0 0 0 0 1 0 0
F - a (4-12)

ax 0 0 F53 F 5 4 F F56 0 0

0 0 F6 3  F64 F65 F6 6  0 0

0 0 0 0 0 0 1/Ta 0

Z .0 0 0 0 0 0 0 -/Ta

where:

A 4x 3 2A
F53 - [-3x 3x 6 + x 4x5 +

B B
.B- B 2

A 4x 3x 4A
F54 - (2x3x 5 +

2  B
B 2

'"" ¥P55 =

2

-2x3 A

B2
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A 4x 3 x4A

-63 . - (-2x 4x 6 + - I

B2  B
B

A 4X412 A

F64 = (3x4X5- X 3 X5 +
B2 B

22x4 AF6 5 -:

B2

-2x 3 x4 A
F 6 6  = """

2
B2

A = (x3 x6 - x4 x5 )

32 2
B = (x3  + X4

4.3 Measurement Model

The measurement model employed corresponds to the form

of a correlation algorithm developed by Rogers (16:53,63)

which provides measurements to a linear Kalman filter

measurement model. This algorithm is enhanced over the

standard correlation algorithm by the following (19:58,59):

1. The current FLIR data frame is correlated with an
estimate of the target's intensity function, an
adaptively constructed template, as opposed to the
previous frame.

2. Rather than simply outputting the peak of the
correlation function, the enhanced correlation
algorithm outputs the center of mass of that portion of
the correlation function which is greater than some
predetermined lower bound, or threshhold. This
technique prevents the difficulty of having to
distinguish global peaks from local peaks, as do the
peak-finding algorithms of many conventional
correlator algorithms. It is also computationally
less burdensome than a peak-finding method.
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3. The FLIR/laser pointing commands are generated
according to the Kalman filter's propagated state

* ""estimate rather than to the output of a standard
correlation algorithm, thereby incorporating knowledge

sof dynamics over the ensuing sample period.

The resultant outputs, or "pseudo-measurements", of the

enhanced corellation algorithm are the linear offsets, xc

and Yc, of the centroid with respect to the center of the

field-of-view, which are subsequently incorporated into the

linear Kalman filter update cycle. A description of this

algorithm is presented In the next two sections and a more

complete description is discussed in (16:52,70).

4.3.1 Generatinq the Template. A template of an esti-

mate of the target's intensity profile is created over the

previous "N" centered target intensity functions (the

. shifting property of Fourier transforms is the mechanism

which centers the intensity functions on the FLIR plane

before averaging). The memory size, "N", over which the

Intensity functions are averaged Is dependent on how the

shape functions are varying in time. Highly dynamic inten-

sity functions demand small "N" values while slowly varying

intensity functions admit large "N" values.

Since a viable software algorithm concern for any

application is the minimization of memory requirements, the

finite memory averaging is approximated through the use of an

exponential smoothing technique. The exponential smoothinq

technique resembles the properties of a finite memory

filter (10:33,39); however, it requires the storage in

60

",'. '....,. .... .--.5."-' : .. ': : : : ," , " . ...... ... , ...- /...--. ..- -.-.-.- ...



..:. mmory of only one FUIR data frame and not NMR frames :

' explicitly. The template for the exponential smoothing

technique is maintained by: .

. - 1 )  - I (t )  + (1 - .. . . .._1 .(4-13) .5

where : .

1(ti) =template-generated "smoothed" estimate of the -
target's intensity function i-

IUti ) a current FLUR data frame's "raw" intensity"
function

= smoothing constant; 0 < T < 1

The smoothing constant, Y, in the exponential smoothing -

algorithm functions as does "NO in the finite memory filter.. .
Large values of emphasize the current data frame as wouldn" fa
ecorresponding small "ei value. A smoothing constant of

t 0.i had pmeviously been determined to suffice fo this

application (18:V-12).

Figure 4.1 shows a block diagram of the template th

generation arrangement enclosed within the dashed line. The

aw FLIR data array is transformed into the Fourtei domain

through the use of a Fast Fourier Transform (FFT)

implemented using the Cooley-Tukey FFT technique (7:18).

The data array Is then centered on the FUIR plane by phase

shifting it an amount equal to the displacement (in the "

original untransformed spatial coordinates) of the target-.

and atmospheric position states from the center of the FUR

*555

POV by the following shifted amount: <'
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where:

q(x,y) = 2-dimensional spatial data array

F{.} - Fourier transform operator

(£x,fy)= Ffq(x,y))

After centering the data array by the phase shifting

technique, the data is subjected to the exponential

smoothing algorithm of Equation (4-13). The "smoothed" data

is then stored in the form of a template and correlated with

the subsequent FLIR data frame which creates the "pseudo-

measurements".

4.3.2 "Pseudo-Measurements" by Snhanced Correlation.

The enhanced correlation algorithm creates the "pseudo-

measurements" in the form of position offsets in two

orthogonal directions. These offsets represent the distance

between the center of the FLIR FOV and the centroid of the

IR Image. The current FLIR data frame is correlated in the

Fourier domain with the template generated from the previous

sample time, thus resulting in a cross correlation. This

cross correlation is performed by computing the Inverse Fast

Fourier Transform (IFFT) of the following:

F((x,y)(x,y)l = g(fx,fy)L (fx1 fy) (4-17)

where:

g(x,y)*I(x,y) = cross correlation of g(x,y) and l(x,y)

g.(x,y) = measured target intensity function,
current FLIR data frame

j(x,y) - expected target intensity function,
generated in the form of a template
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.. lfx,f F(g(x,y)}

(fx,fy) complex conjugate of F((x,y))

After performing the IFFT, a threshholding Is performed

on the correlation function, g(x,y)*l(x,y), that effectively

zeros out any value that is less than 30% of the function's

maximum value (14:52,55). The resultant function corres-

ponds to the relative displacement, or offset, of the

center-of-intensity between the current FLIR data frame and

the template. These offsets are due to the effects of

target dynamics, atmospheric Jitter, and measurement noise

(bending effects are ignored in the filters, however, the

variances of the measurement noises can be increased during

filter tuning to account for this), or:

Xoffset xt + xa + nx (4-18)

Yoffset = Yt + Ya + ny (4-19)

Equations (4-18) and (4-19) can be represented In state

space form by:

_(ti  = !ifx_£(ti) + Y_ (ti) (4-20)

where:

T
;_(ti) = (Xoffset Yoffset1 T , measured in pixels

xf(ti) = filter state vector of Equation (4-1)

1-.- 0 0 0 0 0 1 -[Hf 01(4-21)

0 1 0 0 0 0 0
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= 2-dimensional, discrete-time, zero-mean, white
Gaussian measurement corruption noise measured
in pixels, of covariance R

The measurement noise, yvf(tj), encompasses the

spatially correlated background noise, the FLIR sensor

error, errors due to ignoring the vibration/bending effects,

and errors due to the FFT/IFFT processes. The covariance

matrix associated with this error (except for the impact of

the ignored bending effects) has been determined empirically

to be (16:63,68):

0.00436 0
R [ (4-22)

0 0.0 05981

4.4 Summary

0. This chapter has formulated the filter and measurement

models for the KHAF's elemental filters. One filter model

represents the target's acceleration as a first order Gauss-

Markov process, while the other filter model treats the

target's trajectory as a series of constant turn-rate

segments. Both dynamics models utilize a common linear

measurement model that generates "psuedo-measurements" via a

cross-correlation technique between a template generated

from the previous data frame and the current data frame. An

advantage to the linear measurement model is the ability to

employ the linear Kalman filter update equations (9:117,118)

rather than algorithms which are more computationally

burdensome.

65



V. Tracking Algorithm

5.1 Introduction

This chapter embodies the concepts presented in the

preceding three chapters and describes the tracking algor-

ithm employed in this research endeavor. Following the

discussion on the overall tracking algorithm, the mechanisms

exercised in evaluating the algorithm are also discussed.

I

5.2 Overview of the Tracking Algorithm

A Bayesian Multiple Model Adaptive Filter including a

bank of five independently operating Kalman filters provides

the basis for the tracking algorithm. The processed fields-

of-view for each filter, along with the assumed target's

dynamics in the FLIR plane directions, appear in Table 5.1. I

Note that filters 01, #2, and 13 are represented by square

fields-of-view, whereas filters #4 and #5 are rectangular

field-of-view filters.
I

Table 5.1

KNAF Elemental Filters

Assumed Assumed
Filter I FOV (DLxels) x-dynamics y-dynamcs-

1 8 X 8 benign benign

2 24 X 24 20g 20 g

3 8 X 8 i0g l0 g

4 24 X 8 20 g benign

5 8 X 24 benign 20 g
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5.2.1 Gauss-Markov Model Tracker. The five elemental

filters in the Gauss-Markov MMAF (OM MMAF) are based upon

the Gauss-Markov acceleration model of Section 4.2.1. Each

filter was tuned with the appropriate direction-dependent

acceleration variance, a2 , and time constant, r, (14:68).

These parameters are shown In Table 5.2 for each of the five

filters. Notice that the parameters pertaining to x- and y-

directions for filters #1, #2, and #3 are the same, whereas

they differ for filters 14 and #5 due to the rectangular

geometry of the FOV of these filters. Filters #4 and #5 are

constructed with a larger field-of-view size in the direction

In which harsh maneuvers are expected. The filter driving

Table 5.2

Gauss-Markov Filter Parameter Values

"2 2 2

Filter T 7X 2 *y ay ra va At

1 4.0 250 4.0 250 .0707 .2 1/30

2 1.5 10000 1.5 10000 U "

3 1.5 2000 1.5 2000 K

4 1.5 10000 4.0 250

5 4.0 250 1.5 10000

Units: 7x, y, 7a At : seconds

Orx 2, ay : pixels 2/seconds 4

- 22

Ga : pixels
2
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noise strength, "0", is not shown but can easily be computed

from the following relationship:

2,: - 2V /7 (5-1)

where:

2r = the filter's assumed variance for that target
acceleration process or Jitter position process

7= correlation time of target acceleration or of
Jitter

The parameters shown in Table 5.2 for filters #2 and #3

were determined by tuning a single, large FOV and small FOV

Kalman filter, respectively. Using a trajectory #2 target

maneuver (reference Section 3.4.1), filter #2 was tuned to

20-g dynamics and filter #3 was tuned to 10-g dynamics.

- - Parameter values for filters #4 and #5 are chosen such that

the highly-varying dynamics coincide with the appropriate

channel direction of the rectangular FOV. The Jlinking

maneuvers correspond to the elongated direction of the FOV

and the short end of the FOV is characterized by the benign

dynamics of filter #1. Also note that the sample period,

At, for past research efforts has been 30 Hz. Section 6.3

addresses the potential for implementing the tracking

algorithm at a 50 Hz rate.

5.2.2 Constant Turn-Rate Model Tracker. The MMAF

structure of the constant turn-rate (CTR) model tracker is

of the same configuration as shown in Table 5.1. The key

difference between the CTR and GH model trackers is the

strength of the driving white noise terms, Q", as shown in
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/>. Table 5.3 fox the CTR tracker (the computational burden of

the CTR model is unnecessary for the benign dynamics of

filter 11). Notice that the "0" values do not correspond to

the relation described in Equation (5-1). Previous research

has shown that a CTR filter is considered to be adequately

tuned to a trajectory #2 maneuver when the peak mean-error

Is approximately 1.5 times the filter computed error -

standard deviation or root-mean-squared (Ri4S) value at a

given time, rather than when the filter's computed RMS

errors match the actual RMS errors comumitted throughout the

* simulation, as evaluated over a 10-run Monte Carlo

simulation (10:69,71). The consequence of this relationship

is that the CTR filter overestimates its own errors more

than does the GM filter.

Table 5.3

CtR Filter Parameter Values

Filter # ox Oy

2 15000 15000

3 4000 4000

4 15000 125

5 125 15000 -"

25Units: pixels /seconds
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5.3 Field4-of-View Processing

~ The fields-of-view for all the filters are represented

as 8 X 8 data arrays in order to exploit the single generic

correlation algorithm. This is accomplished by redefining

the pixel size in filters 12, 14, and 15 for correlation

C processing (filters 01 and #3 already are parameterized in

an 8 X 8 array). Filter #2's FOV is represented as an 8 X 8

data array by partitioning the 24 X 24 array into an 8 X 8

array of 3 X 3 elements, where each 3 X 3 element consists

of an average of the nine "small" (20 micro-radians on a

side) elements from the larger FOV. This essentially

* simulates a data array of a "large" (60 micro-radian) pixel

array. The redefined pixel for filter 04 is averaged over a

3 X 1 array of "small" pixels due to the rectangular

geometry and measures 60 micro-radians x 20 micro-radians.

By similar argument, filter 15's redefined pixel measures 20

micro-radians x 60 micro-radians. The FOVs and unit pixel

sizes (shaded regions) for correlation processing are shown

in Figures 5.1 and 5.2.

5.4 Filter Parameters

At initialization of the tracking simulation, accurate

a priori knowledge of velocity is assumed and position is

acquired by an algorithm developed by Tobin (19:130,139).

The position states, xl and X2 , are initialized by

positioning the target's center of mass In the center of the

~~ FUR FOV. The velocity states, X3 and X4, are initialized
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Figure 5.1. Square Fields-of-View, Filters 31, 32, and 13
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) - LTEF IILTER#

- - - - - (-JIX- JN )

Figure 5.2. Rectangular Fields-of-View, Filters #4 and 35
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dependent upon the trajectory selection and the acceleration

states, x 5 and x6, are initialized by computing the delta

velocities at time to and time t1 and dividing by the sample

period. The atmospheric jitter states, x7 and x8 , are

initially zero. The error covariance matrix, E(to), is

initially reflected as:

10 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0

0 0 2000 0 0 0 0 0

0 0 0 2000 0 0 0 0
t( to ) (5-2)

0 0 0 0 100 0 0 0

0 0 0 0 0 100 0 0

0 0 0 0 0 0 0.2 0

0 0 0 0 0 0 0 0.2

The conditional probabilities, Pl, P2, P3, P4, and P5,

are initialized to 0.96, 0.01, 0.01, 0.01, and 0.01 for

filters #1 thru 05, respectively. The initial "heavy"

weighting of the conditional probability on filter 11 Is due

to the "best-matching" characteristics of filter #1's benign

dynamics to the target's straight and level trajectory for

time less than two seconds. In actual practice, initial

acquisition can be presumed to occur on a benign target.

In the event of loss of track due to gross errors in

any of the filter's target position estimates, the tracking

algorithm executes a reacquisition routine. This routine
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• . -'resets the state vector and covariance matrix of the

divergent filter as a linear combination of the state

vectors and covariance matrices of the nondivergent filters.

The conditional probabilities of the nondivergent filters

are then scaled to sum up to one prior to evaluating the

state vector and error covariance matrix of the divergent

filters by

a N -.

= E pnxn (5-3)
n=1

N . a

d= E Pn[En + (.n - n- xdI (5-4)
n=1

where:

-xd,d = state vector and error covariance matrix of
0• each divergent filter

xn,Pn = state vector and error covariance matrix of

each nondivergent filter

N = number of nondivergent filters

Pn = hypothesis conditional probability of the n-th
nondivergent filter. The Pn values are scaled
such that: P1 + P2 +  + PN 1.0

5.5 Tracking Algorithm Statistics

A Monte Carlo simulation provides the mechanism for

evaluating the tracking algorithms' performance. Based upon

the conclusions of previous research efforts that the sample

statistics of ten Monte Carlo simulation runs provides

sufficient convergence to the actual statistics from an

infinite number of runs (19:80), the statistics from ten
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,e ..__, .Monte Carlo runs will act as the basis upon which tracker'--.' ' . - .pefor. o mance is evaluated.

MonThe sample mean eros of the tracking algorithm's

estimates are computed by

N
Exd(ti) = I/N E exdn(ti)

n- 1

N^

= 1/N E (xdn(ti) - Xdnf(ti)i (5-5)
n-1

where:

Exd(t i ) = sample mean error of the x target position
estimate at time ti, averaged over N runs

* exdn(ti) = error in the 14HAF x-position estimate at tI
during simulation n

xdnf(ti) = MMFetmt ftarget's x-position at ti
during simulation n

- xdn(ti) = truth model value of the x-position of the
target at ti during simulation n

N = nuber of Monte Carlo runs

The sample variance of the error, defined in terms of the

same parameters as the sample mean errors, is described by:

N "
2 N 2 -2
Sxd2(ti) = [l/(N-l) r exdn (ti) - (N/(N-l)2xd (ti) (5-6)

nai

Two error parameters are of particular concern when

evaluating the tracking algorithm. The first is the error

committed in estimating the target's position in both the x-

and y- FLIR plane directions. This parameter serves as the

fundamental evaluation mechanism for tracker performance.

-. The second parameter is the estimation error committed In
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locating the target's centroid of the FLIR plane. Because

the target's centroid location is paramount for centering it S

on the ULIR plane for the template generation, this error

parameter supplies information with respect to the filters'

ability to reconstruct the target's shape function and

centroid location.

5.6 Performance Plots

Eight performance plots are utilized in this research

effort to evaluate filter performance. The performance

plots for both the x- and y-direction in the FLIR plane are

as follows

1. True x-position RMS error vs. filter-computed
x-position RNS error

2. True y-position RMS error vs. filter-computed
y-position RMS error

3. Mean x-target position error, + one standard
deviation, plotted at t i - for all i

4. Mean y-target position error, + one standard
deviation, plotted at tj- for all I

5. Mean x-target position error, ± one standard
deviation, plotted at ti+ for all I

6. Mean y-target position error, + one standard S
deviation, plotted at ti+ for all I

7. Mean x-centrold error, + one standard deviation,
plotted at ti+ for all i

8. Mean y-centroid error, +_ one standard deviation, S

plotted at ti+ for all i

,' . A
Performance plots #i and #2 provide information with

respect to the tuning process, plots 13 thru #6 provide
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' :.., tracking performance evaluation, and plots #7 and I8 provide

'- Information regarding the effectiveness of the target

intensity template Identification.

Illustrations of plots #2, #4, #6, and #8 are shown in

Pigures 5.3 thru 5.6, respectively, for the Oauss-Markov

- MKAF algorithm tracking a 10-g, trajectory 12 target

maneuver (note that the expected level of bending Is

included in the truth model but not in the filter model).

Bach of these plots portrays the evidence of the target

maneuver at t = 2.0 seconds.

Bach performance plot is labelled with a plot

designation code that identifies the specific simulation

scenario for which the data is referrenced. This code is in

the following format:

field 1/field 2/field 3/field 4/field 5/field 6

where fields #5 and 06 are optional, and the fields contain

the following information:

field 1 : : Gauss-Markov filter model

CTR : constant turn-rate filter model

field 2 : MMAF : multiple model adaptive filter

8MG-B : single filter with small (8x8) FOV,
used to establish the benchmark

field 3 T(M) : identifies type trajectory (#l, 02,
#3, #4, 05, or #6)

field 4 : (#)-G : identifies the magnitude (in g's)
of the target maneuver
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field 5 (Optional)

T= 71,7 2  : identifies the assumed filter
correlation time pairs when unlike
the nominal (4,1.5)

50 Hz : identifies a simulation with the
50 Hz sample time Incorporated

OB(I) identifies the level of bending
phenomena included in the truth
model

Zo = : identifies when the initial
z-coordinate is different from the
nominal (20,000 meters)

field 6 KP = identifies the different pixel
proportionality constant size from
nominal (20 prad)

R(+) : identifies when the measurement
variance, R, is different from that
identified in Equation (4-22)

For example, the plot designation codes appearing in

Figures 5.3 thru 5.6 reflect:

GM/MMAF/T2/10-G/QB1

This designation implies that the simulation involved the

Gauss-Markov MMAF tracking model with the expected level of

bending included, against a trajectory 12 target maneuver

with the target pulling a 10-g turn.

5.7 Greyscales

Greyscales are symbols used to character 7-

ranges on FLIR plane images and tI- filter pmj

symbols are shown in Table 5.4. Tthi ie ..

S1
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.' . which is a pictorial view of greyscale symbols, illustrates

the adaptive identification of the target's intensity shape

function in the form of a template on a 24-by-24 grid of

pixels. The example shown in Figure 5.7 is the result of a

comparison between a template and a noise-corrupted FLIR

measurement array. The spread, or arrangement of the

greyscale symbols indicate the dispersion of the hotspot

about its centroid and also the location of this intensity

peak relative to the center of the FUR FOV.

'.
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j "' %*.Figure 5.7. Noise Corrupted FLIR Measurement Array
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VI. Performance Analysis ..

S " -,. '5,

6.1 Introduction 6

This chapter presents the results of the various

analyses for those topics outlined in Section 1.3. The

evaluation of the benefits of simulating the tracking .r

algorithms at a 50 Hz rate versus a 30 Hz rate are discussed

in Section 6.2. After the effects of the bending/vibration .

states are analyzed utilizing a single filter for both the

Gauss-Markov model tracker and the constant turn-rate model I

tracker in Section 6.3, the next section then analyzes the

effects of bending/vibration effects with the Gauss-Markov .

multiple model adaptive filter algorithm. A sensitivity

study of various parameters for which the filters are not

retuned (other than Just altering that specific parameter In I

the filter) is presented in Section 6.5, and a sensltvity

analysis of two additional target trajectories is presented

in Section 6.6.

6.2 50 f Implementation Analysis

As suggested in Section 1.3.2, the performance gains

attributable to a 50 Hz implementation are investigated.

This assessment is performed by first establishing a bench-

mark of performance for both the Gauss-Markov and constant S

turn-rate tracker models simulated at the presently-

configured sample rate of 30 Hz. After the benchmark has

been established, the appropriate software changes are I

implemented to accommodate the faster sampling frequency,
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and an identical simulation scenario as conducted with the

benchmark runs is performed, Indicating the Improvement or

degradation as a result of sampling at a higher frequency.

As mentioned in Section 1.3, Tobin's results (13) form

the basis of the tracking performance benchmark for the

analyses to be presented in this chapter. This benchmark is

defined as the performance of a single filter which Is

artificially "told" about certain dynamic parameters at the

onset of a maneuver. The filter employed for the benchmark

simulations is a small FOV (8 x 8) filter for a trajectory

2, 10-g maneuver. The changing parameter for this case is

the strength of the filter driving noise, "Q)", which is

Increased prior to the onset of a maneuver so that the

SOfilter-computed RMS error reaches a steady-state value by

the time the maneuver occurs, thus allowing the filter

bandwidth to open by the time the maneuver is initiated.

These simulations are conducted for both the Gauss-Harkov

tracker and the constant turn-rate tracker models.

6.2.1 Gauss-Markov Moel The performance plots for

the benchmark run and for the case of the 50 Hz simulation

are shown in Figures C-1 through C-8, and C-9 through C-16,

respectively. Notice that each set of performance plots, as

is true of all subsequent simulations, is composed of eight

different types of plots. The first two, as In Figures C-1

and C-2, show the filter-computed estimation error standard

deviation compared to the actual RMB error (in pixels) for
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both the x- and y-directions, respectively. These two plots

indicate the tuning adequacy of the filter(s) by showing a

comparison between the actual and the filter-computed RNS

values. Plots three and four, as in Figures C-3 and C-4,

identify the actual estimation mean error t one standard

deviation at time = tj for the x- and y-directions,

respectively. These parameters are used as a basis for

control generation. Plots five and six, as in Figures C-5

and C-6, identify the same information as plots three and

+
four, but at time = ti +

. These parameters provide the best

possible filter(s) estimation accuracy. The initiation of

the target maneuver at two seconds into the simulation is .-

evident in Figures C-4 and C-6. Plots seven and eight, as

0.- shown in Figures C-? and C-8, show the actual centrold

position estimation error mean ± one standard deviation at

time = ti for the x- and y-directions, respectively.

These parameters provide information regarding the adequacy

of image centering to aid in the construction of the target
'.%

image template.

In both the 30 Hz and the 50 Hz case, the dynamics .5

driving noise strength, "Q", is increased at frame 155 for

the 30 Hz simulation and at frame #195 for the 50 Hz

simulation, allowing for a five-frame transient prior to

target maneuver initiation. Tables 6.1 and 6.2 show the

temporally averaged filter error statistics (mean and

standard deviation, or "sigma"), the filter's peak-mean y-

position estimate errors and the recovery time for both p
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cases (x-position is Just as important; however, the maneu-

vers evaluated here exhibit harshly changing y-direction

characteristics). The two time-averaged intervals, 0.5 to

2.0 and 3.5 to 5.0 seconds, are chosen to allow a 0.5 second

minimum for transients to die out. These intervals are

selected to show comparable statistical data during the p.

benign region and during the maneuver. The peak-mean error

IL

is defined as the greatest mean-error occurring during a

given simulation and the recovery time is defined as the

time it takes for the filter to recover, or reach steady

state, from the maneuver. Both of these parameters are

precise only to the degree that the values are discernible K

from the plots (Figures C-4, C-6, C-12, and C-14), and are

6.. considered accurate to within five percent. In these and

subsequent tables, the heading designations correspond to

the convention established in Section 5.6.

In comparing the temporally averaged mean and one sigma

values for the two tracking simulations, Tables 6.1 and 6.2,

reveals a slight improvement in the mean error associated '

with estimating the position and an improvement in the true

standard deviation about that mean error, which is expected

since the algorithm samples the data at a faster rate and

thus allows less time for error growth. This improvement in

error standard deviation about the mean can be seen in

Figures C-3 through C-6 and C-11 through C-14 by comparing ,-

the relative displacement of the one sigma curves relative
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Table 6.1
"'Single Filter Benchmark;

GN/SNG-S/T2/10-G

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) 10.5 , 2.01 13.5 , 5.01

xerr(t i  -.1623 / .4089 .2073 / .4912

Yerr(ti .0136 / .4241 -.2588 / .4941

Xerr(ti ) -.1044 / .3765 .1479 / .4290
+

Yerr(ti ) .0031 / .3876 -.0998 / .4240

x-centerr(ti + ) .0068 / .1226 .0007 / .1546

+ 0.
Y-centerr(ti ) -.0083 / .0706 .0577 / .0714

y peak-mean error (ti ) - -2.0 pixels

y peak-mean error (ti +  = -1.4 pixels

recovery time = .7 seconds

Table 6.2

Single Filter Simulation;

GM/SNG-S/T2/10-G//50 Hz

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) (0.5 , 2.01 (3.5 , 5.01

Xerr(ti) -. 0385 / .3779 .1110 / .4557

Yerr(ti .0125 / .3787 -. 2352 / .4397

Xerr(ti + ) -.0041 / .3568 .0776 / .4172

Yerr(ti+ ) .0096 / .3522 -.1486 / .3973

x-centerr(ti ) .0400 / .0889 .0504 / .0911

+
y-centerr(ti ) .0169 / .0795 .0719 / .0815

y peak-mean error (ti ) - -2.0 pixels

y peak-mean error (t I ) - -1.3 pixels

recovery time * .6 seconds
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to the mean curve in the two sets of plots (also note the

* difference in scales between the two sets of plots).

6.2.2 Constant Turn-Rate Model. The performance plots

for the two simulations, the benchmark run at 30 Hz and the

50 Hz run, are shown in Figures C-17 through C-24 and C-25

through C-32, respectively. Notice that the filter tuning

for the CTR model is much more conservative than is the case

with the GM model. Since the filters with the CTR dynamics

model exhibit a longer filter-computed covariance matrix

transient than do the GM filters, "0" was increased at frame

#35 (frame 0175 in the 50 Hz case) to allow the transient to

reach steady state and the filter bandwidth to open

appropriately prior to the maneuver initiation. Tables 6.3

.-- and 6.4 show the statistical data for the two simulations,

"3-. which show results that are comparable to those of the

Gauss-Markov tracker. In comparing the filter estimated

error curves for both the simulations, Figures C-25 and C-26

reveal that the relative displacement of the filters'

estimated errors between time ti - and tj is larger than

what is observed in the 30 Hz case of Figures C-17 and C-18.

This occurs due to changing the continuous-time dynamics

noise strength, "0", for the simulations to allow the

discrete-time noise covariance, "0d", to remain the same.

The "(" relationship is described by the following approxi-

mation inherent to the CTR model: .

Qd Q QAt (6-1)
."

.5%
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Table 6.3

Single Filter Benchmark;
CTR/SNG-S/T2/10-G

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) [0.5 , 2.01 [3.5 , 5.01

4A

Xerr(ti) .4106 / .3905 .2343 / .3881

Yerr(ti ) -.0223 / .3822 .3372 / .4232

Xerr(ti ) .3406 / .3715 .1872 / .3588

Yerr(ti + ) -.0242 / .3570 .2987 / .3829

x-centerr(ti ) .0009 / .1145 -.0203 / .1163

y-centerr(ti + ) -.0156 / .0708 .1347 / .0764

y peak-mean error (ti ) = -6.0 pixels
+

y peak-mean error (ti ) = -4.0 pixels

recovery time = 1.3 seconds

0 Table 6.4

Single Filter Simulation;
CTR/SNG-S/T2/10-G//50 Hz

Temporally Averaged Time Interval
Error Parameter
(mean / I sigma) 10.5 , 2.0) 13.5 , 5.0]

Xerr(ti ) .5956 / .3160 .1049 / .3985

Yerr(ti ) .0164 / .3069 .3702 / .3618
' +

Xerr(ti ) .5461 / .3058 .0744 / .3805

+
.':yerr(ti .0149 / .2943 .3389 / .3435

x-centerr(ti + ) .0084 / .0826 -.0402 / .0919

y-centerr(t ! ) .0232 / .0771 .1962 / .0799

y peak-mean error (ti-) - -6.0 pixels
'-S. +

y peak-mean error (ti ) = -5.0 pixels

, .. recovery time - 1.2 seconds
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~ This relationship effectively decreases the discrete-time

noise strength as the sample frequency is Increased,

provided the continuous-time noise strength is unchanged.

Although conceptually it makes sense to keep "0" constant

rather than "0E3"1 "0" was increased to maintain the

equivalent discrete-time filter driving noise for this simu-

lation (to maintain a direct comparison between the two

algorithms at the different sampling frequency), thus reali-

zing a higher slope between ti- and ti +for the filter-

computed estimation errors. Since processing at a 50 Hz

greatly Increases (73% increase) computer processing time,

the benefit of decreasing the uncertainty of the position

.estimate on the order of a tenth of a pixel, as compared to

the 30 Hz version, is not warranted. Therefore, in an

effort to conserve computer processing time, subsequent

simulations are processed with a sample period of 30 Hz.

6.3 Single Filter Bending/Vibration Analysis

This section addresses the impact of including the

bending/vibration states of a large space structure into the

tracking algorithm's truth model without modifying the

tracker's filter model. Thus, this Is a robustness study of

the original filter design. The two benchmark scenarios,

processed at 30 Hz, discussed in Section 6.2, form the

baseline of comparison for both the Gauss-Markov tracking

model and the constant turn-rate tracking model.
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% 6.3.1. Gauss-Markov Model Tracker. The performance

plots for the case of Including the bending/vibration states

are shown in Figures D-1 through D-8. Notice from Figures

C-1, C-2, D-1, and D-2, that the filter estimates for the

simulation with the bending/vibration states Included and

without additional tuning underestimate the actual error.

Although the true RMS value of x- and y-position has

increased with the inclusion of vibration and bending, the

VP filter-computed error does not appear to change. This

Implies that the filter is more confident of its outputs

than it should be. Although the filter can be improved by

retuning, the robustness of the original filter Is the prime

concern under consideration. In comparing the time-averaged

statistics of Tables 6.1 and 6.5, it is evident that,

although the mean error between the two cases does not seem

to vary much, the one sigma values about the mean have

increased by approximately 2/10 to 3/10 pixels with the

Inclusion of the bending/vibration. This relationship can

p also be seen In Figures C-3 through C-6 and Figures D-3

through D-6. This increase In the uncertainty with respect

to the position variables is due partly to the filter not

estimating the bending states and partly to the enhanced

correlation algorithm not considering the effects of bending

when establishing the offsets from the center of the field-

of-view In constructing the image. Recall the measurement

equations for the two directions:
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Z= Yd + Xa + Xb + v2 (6-2)

where these measurements represent the location of the

target centroid as indicated by the correlator. However,

the filter is not provided any information with respect to

the two bending states, xb and Yb, nor is it tuned with

additional measurement uncertainty noise associated with vl

and v2. No appreciable change in estimating the location of

the centroid appears between the two simulations.

Table 6.5

Single Filter With Bending/Vibration;
GM/SNG-S/T2/l0-G/QB1

Temporally Averaged Time Interval
Error Parameter
(mean I sigma) [0.5 ,2.0] [3.5 ,5.0]

xerr(ti) -.1449 /.6297 .1536 /.7625

Yerr(ti ).0610 /.6407 .1588 /.6698-

Xerr(tl ~) -.0849 I.5947 .0922 /.7133

Yerr(tj ) .0474 /.6026 -.0015 /.6096

+

y-centerr(ti -.0055 /.0758 .0617 I.0774

y peak-mean error (ti -2.0 pixels

y peak-mean error (tj i -1.2 pixels

recovery time =.7 seconds
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6.3.2 Constant Turn-Rate Model Tracker. The

performance plots for the case where the bending/vibration S

states are included using the constant turn-rate model

tracker are shown in Figures D-9 through D-16, and the

statistical data appears in Table 6.6. As was evident in

the Gauss-Markov case, although the time averaged x- and y-

position errors are roughly of the same order, the 1-sigma

deviation for the bending/vibration case tend to be .2 to .3

pixels greater than for the benchmark case in Table 6.3.

This implies that the inclusion of the bending/vibration

phenomena increases the uncertainty of the actual position

Table 6.6

0. Single Filter With Bending/Vibration;
CTR/SNG-S/T2/10-G/QB1

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) (0.5 , 2.01 [3.5 , 5.0)

err(ti ) .4511 / .6175 .2088 / .7312

Yerr(ti) .0098 / .6179 .4558 / .6266

Xerr(ti + ) .3800 / .5877 .1636 / .7000

Yerr(ti .) 0109 /.5884 .4162 / .5872

x-centerr(ti ) .0022 / .1088 -.0129 / .1109

y-centerr(ti ) .0025 / .0647 .1584 / .0622

y peak-mean error (ti) : -6.0 pixels

y peak-mean error (ti ) = -4.0 pixels

recovery time = 1.3 seconds
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of the target by 2/10 to 3/10 of a pixel, or, the impact of

modeling the bending phenomena has a the same impact on

the constant turn-rate tracker model as was evident on the

Gauss-Markov model tracker. Again, as was the case for the

Gauss-Markov model tracker, the time averaged statistics

pertaining to the location of the centroid are not affected

by the inclusion of the vibration and bending phenomena.

The effects of performing the simulation at the faster

sampling time (50 Hz) and the effects due to modeling

bending and vibraion have shown comparable results to both

the Gauss-Markov model tracker and the constant turn-rate

model tracker (performance data not shown). Although the

constant turn-rate model tracker has exhibited better

.0 performance than the Gauss-Markov model tracker at close

ranges, the robustness issues to be addressed do not concern

close range scenarios; therefore, subsequent simulations

utilize the GM MKAF tracking algorithm since past studies

have shown it to be preferable to the CTR model tracking

algorithm at moderate to long ranges.

6.4 MMAF Bending/Vibration Analysis

An analysis comparable to that of the single filter

case, Section 6.3, is performed with the (M MMAF tracking

algorithm. In addition to the two scenarios analyzed in the

single filter case (excluding, then including, the bending

and vibration phenomena), two additional scenarios are

considered. The four scenarios, which are distinguishable

A'. .
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by the magnitude of the zero frequency PSD value of bending

noise (see Appendix A for the full development of Kb 2 , which

is in fact that PSD value at zero frequency), are addressed

2
In subsequent sections: 1) Kb = 0, or effects of bending/

2 -"13
vibration states are excluded; 2) Kb = 5 X 10 - , includes

the anticipated effect of bending/vibration without filter
2 -12"-

retuning; 3) Kb = 5 X 101, increases the effect of

bending/vibration states by an order of magnitude above the

anticipated nominal values, again without filter retuning;

and 4) same as (3) plus the addition of filter tuning.

These analyses are performed with the Gauss-Markov,

multiple-model adaptive filter tracking algorithm against a

trajectory #2, 10-g maneuver.

6.4.1 MMAF Benchmark Simulation. Figures E-1 through

E-8 show the benchmark of performance simulation for the

case where the bending/vibration states are excluded from

the truth model. These results are the same as those

determined by Tobin (19:150-157). The statistics for the

MMAF benchmark are shown in Table 6.7 and the dominant

elemental filters are reflected in Table 6.8. These two

sets of information serve as the basis of performance

comparison for subsequent analyses involving the Gauss-

Markov, Multiple Model Adaptive Filter, 10-G pull-up

maneuver, trajectory #2 simulations.

Notice that the reacquisition algorithm discussed In

Section 5.4 is accomplished at frames #74 and #75, as shown

..-. in Table 6.8. The state estimate of filters I, #3, 14, and
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p..- Table 6.7 .

Multiple Model Adaptive Filter Benchmark;
GM/MMAF/T2/10-G

4.

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) (0.5 , 2.01 [3.5 , 5.01

xerr(ti-) .0024 / .4351 .2394 / .5155

Yerr(ti-) .0001 .4327 .0968 / .7136

Xerr(ti ) .0116 / .3852 .2010 / .4303
+

Yerr(ti + )  -.0090 / .3950 .2311 / .6094

+
x-centerr(ti ) -.0033 / .1123 .0852 / .1787 ,

y-centerr(ti ) -.0159 / .0634 .3991 / .2781

y peak-mean error (ti ) = -1.7 pixels
+

y peak-mean error (ti ) = -. 7 pixels

recovery time = .6 seconds

Table 6.8

Dominant Elemental Filters;
GM/MMAF/T2/10-G

Interval Dominant N1

(Frames) Filter(s) Comments

1 - 65 51 Tracking of benign trajectory;
maneuver begins at frame 60

66 - 73 12, 55 Y-direction maneuver recognized

74 - 75 02 Other filters "lose lock"

76 - 120 12, 14 Wide FOV tracking

121 - 150 53 l0-g maneuver recognized
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55 are all reset to match filter 12's state estimate since '.

filter 92 is the only filter that doesn't "lose lock". At

frame 574, a good estimate of the target's y-acceleration is

predicted by filter #2, which is then transferred to the

other filters during the reaquisition cycle. This transfer

effectively resets the conditional mean value of the Gauss-

Harkov acceleration processes in the remaining filters, thus

providing each filter an accurate estimate of actual y-

direction target dynamics. It is reasonable, therefore, to

stretch the FOV in the x-direction (weighting filter 54

appropriately) during this period since most of the changes N

in the target's acceleration now occur in the x-direction.

6.4.2 Effects of Bending/Vibration. This section

addresses the impact of including the bending/vibration
states in the simulation truth model but not telling the

.'

filter any additional information. Recall from Appendix A

that the strength of the bending/vibration white noise, Ob,

2
is expressed in terms of the parameter Kb and that the

baseline value for Kb 2 is 5 X 10- 1 3 (equal to the zero-

frequency PSD value). Figures E-9 through E-16 show the

performance plots for this simulation. Figures E-9 and E-10

show that the actual error exceeds the filter-computed error

at random intervals throughout the simulation, thus Implying

that the filter is oblivious to the changes being contrib-

uted from the bending/vibration phenomena, as expected. As

was the case for the single filter analysis, the MHAF

appears to be more confident of its outputs than it should
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Table 6.9

MMAF With Bending/Vibration;
GM/MMAF/T2/10 -G/QB1

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) (0.5 , 2.01 (3.5 , 5.01

Xerr(ti) .0410 / .6374 .1837 / .7821

Yerr(ti ) .0582 / .6463 .0944 / .7983

Xerr(ti ) .0498 / .5926 .1395 / .7224

Yerr(ti +) .0439 / .6076 .2306 / .6912

x-centerr(ti + )  .0010 / .1332 .0451 / .1471
+

y-centerr(ti ) -.0081 / .0718 .3143 / .2415

y peak-mean error (ti ) = -1.6 pixels

y peak-mean error (t + ) = -. 7 pixels

recovery time = .6 seconds

Table 6.10

Dominant Elemental Filter;
GM/MMAF/T2/ 10-G/QB1

Interval Dominant
(Frames) Filter(s) Comments 0"

1 - 66 11 Tracking of benign trajectory;

maneuver begins at frame 60

67 - 72 12, 55 Y-direction maneuver recognized

73 02 Other filters "lose lock"

74 - 138 52, #4 Wide FOV tracking, intermittent
attempts to lock on x-direction
filter (04)

139 - 150 03, 14 10-g maneuver recognized, harsh
changes in x-direction followed
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be. Table 6.9 shows the time averaged statistics for this

simulation. A comparison of the x- and y-direction error

statistics of Table 6.9 to those of the benchmark case of

Table 6.7 reveal that, although the estimate of the mean f

error in both cases, with and without bending/vibration, are

very similar, the uncertainty about that mean is increased

by an average of 0.2 pixels when the bending/vibration

phenomena is introduced. This Is a direct correspondence

with that found in the single filter benchmark case. This

increase in the uncertainty can also be seen by comparing

Figures E-li through E-14 to the benchmark equivalent plots

of Figures 3-3 through E-6. The estimate of the x- and y-

centroid errors and their associated one sigma values for

'o0. both cases show no apparent dissimilarities between the two,

as was the case with the single filter analysis In Section

6.3. The dominant elemental filters for this simulation are

shown in Table 6.10. As compared to the benchmark, in Table

6.8, the two cases reveal some differences. First of all,

this tracking scenario tracks the benign portion of the

simulation for one frame longer than did the benchmark,

otherwise interpreted as an additional one frame delay

before a maneuver was recognized. Secondly, and also sur-

prisingly, the simulation "lost track" for only one frame

(rather than two as did the benchmark) shortly after recog-

nizing the y-Jink maneuver. And thirdly, it takes the

algorithm longer to recognize the 10-g maneuver when the

bending phenomena is modeled.
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6.4.3 increased Bending/Vibration Phenoena. This

section addresses the concern of what magnitude of filter

performance degradation can be expected if the phenomena due

to bending/vibration is an order of magnitude greater than

expected, or Kb2 = 5 l 10- 12. Figures 9-17 through B-24

show the performance data and Table 6.11 reflects the

statistics for this simulation. Figures E-17 and 9-18

reveal the adverse impact as a result of the increased

effect of the bending/vibration phenomera. Although the ,a

actual RMS error has increased significantly, the filter-

computed RMS error Ignores these effects. This is

*. comparable to the case of a finely-tuned filter for a

scenario which is really not present, which is expected

since the bending phenomena is not modeled in the filter.

The temporally averaged statistics of Table 6.11 show a
.'"

significant difference in the one sigma values about the

mean x- and y-error parameters, although the mean-error

estimates had not changed significantly. The standard devi-

ation of the errors has increased by a factor of four to

five times beyond what was seen in the benchmark simulation.

This wide spread of the one sigma error is clearly visible

in Figures E-19 through R-22. Since the average uncertainty

associated with the x- and y-error parameters lie in the
%°

range from 1.5 to 2.0 pixels, filter tuning is appropriate

In an attempt to force the filter to "recognize" the

changing, dynamic environment which it is ignoring, again,
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Table 6. 11

KHAF with Increased Bending/Vibration
.4 GM/MAF/T2/10--3/OB2
.4

Temporally Averaged Time Interval

Error Parameter
(mean / 1 sigma) 10.5 , 2.01 (3.5 , 5.0)

Xerr(ti) .0927 / 1.539 .1294 / 1.976

Yerr(ti ) .1610 / 1.515 .2304 / 1.625

+

Xerrltj +  • 1004 / 1.915 .0741 / 1.915

Yerr(ti ) .1397 / 1.449 .3446 / 1.528

4. x-centerr(ti ) -. 0345 / .1493 .0053 / .1570
D (ti+

y-centerr(ti ) .0062 / .0932 .1862 / .1976
4.%

y peak-mean error (ti ) =-1.7 pixels
y peak-mean error (ti + ) = -. 7 pixels

recovery time = .6 seconds

which is expected due to the original tuning. Even though

the filter grossly underestimates the error variances in its

estimates of the target's x- and y-position, the x- and y- 4-
4-

centroid errors do not appear to be affected as compared to

the benchmark simulation. This shows that, although the

state estimates are corrupted via the reduced-order filter

model, there is little impact on centering the image for

averaging.

6.4.4 Increased Bending/Vibration Wi Tuning. This
4."

section addresses the attainable performance when the order .
4.

of magnituoe of bending/vibration phenomena such as shown in
4. °
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Section 6.4.3 Is evident In the truth model but the filter

-~ is allowed to be retuned for best estimation accuracy. In

selecting the appropriate filter tuning parameters, the

filter 00" is disregarded since the dynamics models have not

varied from the baseline simulation. The filter "R" value,

however, should vary due to the fact that the bending and

vibration phenomena was not modeled in the filter (recall

Equations (6-2) and (6-3)) and, in fact, the "R" is expected

* to increase, to account for the variance (RMS) contribution -

Of xb and Yb to z, and z2, respectively. An initial

approximation as to what "R" value to choose can be computed

from the adaptive estimation relation (10:122):

-ti - !irjT (tj)U.tj )HT. (tjfl (6-2)
N4 J=i-N+1

The first approximation of "R" revealed that it should

be increased almost two orders of magnitude greater than the

empirically determined values Identified in Equation (4-22)

without bending effects considered. This increase, however,

only improved tracking performance slightly better than what

had been shown without the additional tuning. A closer

examination of the mean-squared value contribution associ-

ated with the bending states (over a single Monte Carlo

simulation) revealed that an increase of four orders of

magnitude, rather than two, over the baseline *R" values was

appropriate. Filter tuning for the "best" values resulted

in the following, which is the result of adding 41 to the
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S.. values Identified In Equation (4-22) (the value of 4 was

derived from taking the average contribution of the variance

from xb and Yb over a single Monte Carlo run): p

[03 4.00598](6)

The corresponding performance plots are shown in

Figures E-25 through E-32 and the statistical data appears

in Table 6.12. Notice that the filter exhibits a delayed

response to the maneuver by approximately one-third of a

second as illustrated by the filter-computed RMS error

curves of Figures E-25 and E-26. In addition, these plots

show the effect of the increased measurement noise "masking"

the filter-computed RMS values, implying that the filter is

tuned to place less trust in the measurements and to rely

morq on the internal filter dynamics models. The increase in

measurement noise also implies that there lies a greater

uncertainty associated with the measurements, which Is Indi-

cated in Figures B-27 through E-30 by the larger standard

deviation as compared to the previous case without the addi-

tional tuning, as depicted in Figures E-18 through E-24.

This relationship can also be seen by comparing the x- and

y-statistics shown in Table 6.12 with the corresponding data

In Table 6.11. In addition to the increased standard devia-

tion, the y-channel also displays a bias of approximately

- * -4.0 pixels, beginning at the onset of the maneuver and
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' ,- - Table 6.12

MMAP with Increased Bending and Tuned
. G~N/MMAP/T 2/10 -G/QB2/R +4

, Temporally Averaged Time Interval
i Error Parameter

(mean I sigma) [0.5 ,2.01 [3.5 ,5.01

, xerr(t i  ) -. 0660 /1.515 .5191 /2.102

"-.Yerr(ti ).0200 /1.509 -1.392 / 1.581

Xerr t i + -. 0506 /1.462 .4398 /2.049

Yerr(ti + .0136 /1.456 -3.703 /1.514

x-centerr(t i +) -.1880 / .6455 .4274 /.5502

y-centerr(t i +) -. 0932 / .5986 -4.015 /.4384

y peak-man error (t I )= -6.5 pixels

peak-mean error (ti )--4.5 pixels

• recovery time .6 seconds

continuing throughout the duration of the simulation. This

phenomenon is also exhibited by the estimated y-centroid

error as illustrated in Figure E-32, with an initial bias of

about -3.0 pixels and increasing (negatively) in time.

These biases in the y-channel are a result of the increased

measurement variances in the filter-assumed model. Examina-

tion of the dominant elemental filters for this simulation

revealed that filter #2, the large FOV filter, remained

dominant throughout after the time of the maneuver

intlation. This Implies that the increased measurement

variance Inhibited the abilLtiy of the MHAF algorithm to
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distinguish between the "good" and "bad" filters, and thus '5'
,5* -.

the increased bias in the y-channel is due to filter 12's

poor estimate of y-channel dynamics. This can also explain

the exceptionally high time-averaged y-centroid error para- .

meter value shown in Table 6.12 between 3.5 and 5.0 seconds.

As a result of the proposed tuning method, Figures 3-24 and -',

9-25 indicate that better performance is attained with the

higher "R" values; however, Figures E-26 through E-32

indicate the converse (especially in the y-channel).

As a further investigation into this concept of the

unexpected bias contribution, the discrete-time measurement

noise matrix was changed to reflect the values of 1.5 where

the square root of this is the standard deviation contribu-

tion from the bending states over a ten run Monte Carlo

simulation (it makes more sense to alter the measurement

matrix by the variance; however, the intent of this simula-

tion is to show a trend, rather than a physical realiza-

bility). The performance plots for this simulation are

shown in Figures E-33 through E-40. Figures E-33 and E-34

reflect that "better" tracking as compared to the case with- S

out tuning is effected; however, a similar occurrence to

that of the previous tuned case is evident - a biasing 'A."

effect appears after the maneuver Initiation in the y-

channel. Again, the dominant filter after the maneuver was

filter 12, and, thus, this shows that too large of a ".

measurement variance was being utilized in order for the

algorithm to adequately distinguish the correct model.
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•. *.. 6.4.5. Impact of Bending/Vibratlon Phenomena. As has

been shown, the effect of modeling bending and vibration in

the truth model but not providing the filter such additional

information does not impede the Gauss-Markov MMAF tracking

algorithm from accurately pointing and tracking, provided

the level of bending and vibration is on the order of that

expected. However, if the level of bending and vibration is

greater than that which is expected, tracking can be main-

tained but accurate pointing for the purpose of focusing a

weapon such as a laser is severely degraded. The two tuning

exercises associated with the increased bending level have

implied that the result of increasing the measurement

variance to account for the unmodeled effects impedes the

e. . MMAF algorithm's ability to choose the appropriate filter

model in the bank.

6.5 Scenario Sensitivity Analysis

This section addresses the sensitivity of the tracking

algorithm to variations of pixel size, target type, target

range, and noise characteristics. The simulations performed

for this analysis do not include the effects of bending and

vibration in the truth model; in addition, software

modifications have been introduced at this point to

accommodate the description of two additional trajectories

which are introduced in the following section. These

simulations are performed using the Gauss-Markov, MMAP
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tracking algorithm employing a traJectory 12 configuration.

Table 6.13 shows the scenarios considered for this analysis.

The target type parameters, or correlation time pairs,

of 8/3, 4/1.5, 4/.8, and 4/.4 are perceived to represent the

dynamics of a long-range missile, a bomber aircraft, a high-

performance fighter aircraft, and an air-to-air missile,

respectively. These time pairs identify the correlation 4

times assumed by the filter for both the benign and the

dynamic case; for the benchmark, the benign r= 4 seconds

and the dynamic T= 1.5 seconds. The pixel size corresponds

to the angular field-of-view of a single pixel and the range

parameter corresponds to the target's initial condition at a

location perpendicular to the FLIR FOV. With respect to

* ' pixel size, those simulations that vary from the nominal -

(nominal =20 ALrad on a side) necessitate changing the

inertial x- and y-initial conditions in order to provide

the tracker the identical initial angular orientation of the

target as seen by the FLIR FOV as in previous studies. This

relationship with respect to elevation and azimuth is

depicted in Figure 2.6. -

The noise parameters, OR, and 0R2, are the respective

continuous-time noise strengths (nominal values determined

by computing Equation (5-1) on the values depicted in Table

5.2) for the dynamics driving noises for the models upon

which the filters are based. Recall from Equation (5-1)

that "0" is expressed as a function of the acceleration

variance (or mean squared value) and correlation time for
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- , " Table 6.13

Scenario Sensitivity Parameters

I Target Type Pixel Size Range Noise Maneuver
(seconds) (radians) (meters) (0)

1. 8/3 200 nrad 2000000 QR1 2-G

2. 8/3 200 nrad 2000000 QRl 10-a -

3. 4/1.5 20 Fprad 20000 QR1 10-G

4. 4/1.5 20 grad 20000 QR1 20-G
5. 4/.8 20 prad 20000 OR1 10-G

6. 4/.8 20 trad 20000 QR1 20-G

7. 4/. 20 grad 20000 OR1 10-G

,.2;.8. 4/.A 20 prad 20000 QR1 20-G,,

9 9. V4 2 mrad 20000 QR2 10-G
(..

. 10. 4/.4 2 mrad 20000 QR2 20-a

the first-order Gauss-Harkov filters. The parameter OR1 in

Table 6.12 implies that, for those simulations, the zero

frequency PSD (and low frequency) value for "Q" must be

equivalent to that of the benchmark simulation in order to

retain a viable performance analysis comparison, or, the

mean squared value of acceleration (where the energy corres-

ponds to the area under the PSD curve of Figure 6.1) remains

the same between the scenarios to be compared. Therefore,

for those simulations where the target type is different

from that of the benchmark simulation ("T= 4/1.5 seconds),

.4 the corresponding filter variance must also be adJusted to
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.. ,.., retain this relationship. Figure 6.1 illustrates the rela-

tionship between "0" and the PSD curve for a first-order

Gauss-Narkov process. The noise parameter 0 R2 is an excep-

tion to the above discussion based upon the intuitive notion

that, as the pixel size decreases in magnitude without a

corresponding increase in range magnitude, then a similar

proportional increase of the filter's driving noise strength

must occur in order to compensate for the "apparent" changes

1 * in target dynamics due to decreased pixel size. Note that

adjusting the baseline "Of value, QRI, is not necessary for

the first scenario listed In Table 6.13 as compared to the

nominal since the pixel size not only decreased by two

orders of magnitude from the nominal but the initial

I *" (nominal = 20,000 meters) range coordinate also increased by

-.
Q(O) 2 2

w (frequency)

T

.- Figure 6.1 PSD Plot of a First-Order Gauss-Markov Process
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two orders of magnitude. This corresponds to the argument

that, as the pixel size decreases/increases in magnitude and

N the range to target increases/decreases by a proportional

degree of magnitude, the driving noise strength necessary in

the filter to depict the same magnitude of target maneuvers

Is unchanged. In addition, this differs from Tobin's "O-vs-

Range" function (19:126) described by:

2

Qr2 = (r2/rl) O(rl 6-4)

where:
=i

rl = strength of driving noise for a target at range r2

*. . r2 = strength of driving noise for a target at rabge r2.

where this relationship is based upon targets at different

ranges while maintaining the equivalent pixel size.

Rather than discussing all ten of the simulation

scenarios listed in Table 6.13, scenarios 1, 4, 5, 8, and 9

will be discussed since these simulations encompass the

different variations of parameter values. Scenario #2 is

the same as #I but with the turn maneuver occurring at a

higher g-level. Scenario 03 is the same as the benchmark

run discussed in Section 6.4.1 and scenarios #6, #7, and #i0

are similar to #5, 18, and 19, respectively, with the

exception of the different g-level maneuver.

6.5.1 Range/Pixel Size Sensitivity. Scenario 1i

considers the case where the pixel size is decreased by two

orders of magnitude and the range-to-target is increased by

two orders of magnitude (nominal range = 20000 meters).
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This scenario is performed for a target represented by a

--,

"benign" correlation time of 8 seconds and a "dynamic"

correlation time of 3 seconds throughout the 2-g turn. The

performance plots for this simulation are found in Figures

F-I through F-8 and the time averaged statistics are

compiled in Table 6.14. The statistics for this simulation

are very similar to those of the benchmark case as depicted

in Table 6.7 with one unique exception: the y-peak-mean

error is approximately 1/2 that of the benchmark run, or the

filter does a better Job estimating the target's position at

the time immediately following the harsh maneuver when the

Table 6.14

MMAF Scenario #1 Statistics
GM/MMAF/T2/2-G/-=8,3/Zo=2000000

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) [0.5 , 2.01 (3.5 , 5.01

Xerr(ti ) .1572 / .5273 .1141 / .5398 ".

Yerr(ti ) -.0258 / .3543 -. 0426 / .3760

Xerr(ti )  .1360 / .4230 .1156 / .4331

Yerr(ti + )  -.0223 / .3114 -. 0259 / .3354
+

x-centerr(ti ) .1223 / .1035 .0566 / .1345

y-centerr(ti ) .0049 / .0589 -.0043 / .0817

y peak-mean error (ti-] = -.9 pixels

y peak-mean error (ti ) = -.6 pixels

recovery time = .7 seconds
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target is positioned at great distances from the sensor.

Figure F-2 shows this phenomenon, as compared to the bench-

mark case in Figure E-2, where the actual RMS error changes

drastically for the time between 2.0 and 3.0 seconds and the

filter does a good Job of following the changes. Also of

particular interest are the different characteristics asso-

ciated with the estimated x- and y-centroid positions as

shown in Figures F-7 and F-8 as compared to Figures E-7 and

E-8 (note the difference in scales). The estimated x-plus

centroid position exhibits a positive bias, or overestimate,

until the time when the maneuver is initiated, shown in 'a

Figure F-7, as compared to the relatively stable estimation

shown in Figure E-7. On the contrary, the estimated y-plus

centroid position exhibits a much more stable estimation,

shown in Figure F-8, as compared to that of Figure E-8,

which exhibits a bias for time greater than 3.5 seconds.

6.5.2 High-q Maneuver Sensitivity. Scenario #4

represents a target of correlation time pair of 4/1.5

seconds pulling a 20-g maneuver at nominal range and pixel

size and utilizing the baseline values of Q. Performance

plots for this simulation are shown in Figures F-9 through

F-16 and the statistical data is reflected in Table 6.15.

As had been demonstrated in a previous research effort by

Tobin (19:107,109), the filter performed rather well against '

this scenario, which serves as the benchmark to measure the

effectiveness of subsequent 20-g scenario simulations. Note

how fast the filter recovers from the maneuver, as can be
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' , Table 6.15

MMAF Scenario #4 Statistics
GN/MMAF/T2/20-G/T=4, 1.5

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) [0.5 , 2.01 [3.5 , 5.0]

Xerr(ti-) -. 0456 / .4261 .5565 / .5519

Yerr(ti ) -. 0105 / .3577 .4192 / .6163

Xerr(ti + ) -. 0354 / .3707 .4294 / .4377A+,

Yerr(ti ) -. 0137 / .3173 .5792 / .5144

x-centerr(ti + ) -. 0006 / .0948 .2694 / .1697

y-centerr(ti + ) -. 0015 / .0536 .6919 / .2719

. y peak-mean error (ti ) = -2.3 pixels
~+

y peak-mean error (ti ) = -1.1 pixels

- recovery time = .5 seconds

seen by comparing Figure F-2 to E-2, thus implying that the

filters are "better" tuned for 20-g maneuvers than they are

for 10-g maneuvers. This is also evident in Figures F-6 and

E-6 in the estimation of the y-plus position and Figures F-8

and E-8 in estimating the y-plus centroid position.

6.5.3 Medium Correlation Time Target. Scenario #5

represents a target of correlation time pair 4/.8 seconds at

nominal pixel size, range, and noise strength pulling a 10-G

turn. The variances associated with elemental filters #2,

13, #4 x-dynamics, and #5 y-dynamics were adjusted to 5333,

1066, 5033, and 5033, respectively. This adjustment retains
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the equivalent mean squared value of acceleration that was

available to the filters in the benchmark runs so that a

one-to-one comparison is effected (pictorially illustrated

in Figure 6.1). The performance plots for this simulation

appear in Figures F-17 through F-24 and the statistics are

shown in Table 6.16. Evident in both the statistical data

and the performance plots are characteristics comparable in

performance to the benchmark, with the exception that the x-

channel estimates shown in Figures F-19, F-21, and F-23 (as

compared to Figures E-3, E-5, and E-7, also note difference

in scales) for both position and centroid position exhibit a

time-Increasing bias after roughly 0.5 seconds after the

Table 6.16

MMAF Scenario #5 Statistics
GH/MMAF/T2/10-G/-=4, .8

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) [0.5 , 2.01 [3.5 , 5.01

xerr(ti) -.0516 / .4243 .2955 / .5216

Yerr(ti ) -. 0097 / .3574 -.0735 / .6532

xerr(ti + ) -. 0374 / .3699 .2476 / .4196

Yerr(ti ) -.0125 / .3174 .0912 / .5883

x-centerr(ti ) .0010 / .0978 .1419 / .1456
+

y-centerr(ti ) .0005 / .0541 .3575 / .3041

y peak-mean error (ti ] -1.7 pixels

+
y peak-mean error (ti ] = -. 7 pixels

... recovery time = .5 seconds
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:- .. :...maneuver has been initiated. The probable cause of the bias

Is the fact that the filters were previously tuned for a

-p* target correlation time of 1.5 seconds, thus, the strength

of the driving white noise, u0", was predicated on this type

of correlation time. This is comparable to optimally tuning

~ the Kalman filters to track bomber type aircraft but

performing the tracking simulation against fighter type

aircraft. one means to handle this phenomenon would be to

provide adaptive estimation of parameters such as the filter

Oor other parameters where appropriate, and adjust the

parameters to react to the changing environment.

6.5.4 Past Correlation Time Target. Scenario #8 rep-

resents a target with correlation time pair of 4/.4 seconds

to. at nominal pixel size, range, and noise strength pulling a

20-G turn. Again, the variances related with elemental

filters 02, #3, 14 x-dynamics, and 15 y-dynamics were

adjusted to 2667, 533, 2667, and 2667, respectively, to

account for the matching of the mean squared value of accel-

eration between this simulation and the benchmark (see

Figure 6.1). For performance comparison purposes, this

simulation is measured against the performance exhibited in

the Scenario #4, the 20-g benchmark. The performance plots

for this simulation appear in Figures F-25 through F-32 and

the statistical data is shown In Table 6.17. In comparing

the performance data, Figures F-27, F-29 and F-3l, as

-. -~.compared to Figures F-11, F-13, and F-15 (note difference
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Table 6.17

MAF Scenario #8 Statistics
GM/MMAF/T2/20-G/r=4, .4

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) (0.5 , 2.01 (3.5 , 5.01 5

Xerr(ti) -.0679 / .4213 1.175 I .5201

Yerr(ti) -.0089 / .3557 -. 8953 / .3924

xerr(t i +) -. 0467 / .3702 .8846 / .4199

Yerr(ti +) -.0119 / .3154 -. 6203 / .3609

x-centerr(ti ) .0013 / .0970 .5576 / .1525

y-centerr(t i ) .0004 / .0528 .0665 / .1045 5

y peak-mean error (ti ) = -3.0 pixels

y peak-mean error (ti ) = -1.5 pixels

recovery time = .7 seconds

in scales), the bias in the x-channel as seen in the

scenario 05 is prevalent. In fact, this bias is larger than
p

seen previously, primarily due to the greater mismatch of

the correlation times as compared to the benchmark. Again,

a parameter estimation technique would seem appropriate to

compensate for the large bias errors.

6.5.5 Pixel Size/Noise Strength Relationship.

Scenario 09 represents a target of correlation time pair of
I

4/.4 seconds at nominal range and pixel size of two

milliradians pulling a 10-G maneuver. The noise strength

for this simulation was decreased by two orders of magnitude
p

.''. for each filter to correspond to the same increased pixel
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.-*. size from nominal. The performance plots appear in Figures

F-33 through 7-40 and the statistical data is depicted in

Table 6.18. Of particular interest is the high x-position

estimation error for time less than 1.2 seconds as compared

to the benchmark simulation. Although this is evident in

Figure F-33, it is more clearly visible in the mean error

estimate shown in Figures F-35 and F-37. The mean value of

the error in the filter's prediction estimate has increased

by almost two orders of magnitude compared to what had been

experienced in the benchmark scenario. This is felt to be

due to the fact that, although the pixel size had increased

Table 6.18

MMAF Scenario 09 Statistics
". GM/HMAF/T2/10-G/r'=4,. 4/KPT=.002

- Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) [0.5 , 2.01 [3.5 , 5.0)

Xerr(ti ) .2263 / .4067 .0753 / .3103

Yerr(ti ) -. 0440 / .3241 -. 0932 / .3087
+

xerr(ti ) .1616 / .2964 .0756 / .2916

Yerr(t: ) -.0422 / .2964 -. 0761 / .2889
^ +

x-centerr(t i ) .0070 / .1021 .0132 / .0982

y-centerr(ti ) -.0156 / .0634 -. 0160 / .0632

y peak-mean error (ti ) =-.3 pixels

y peak-mean error (ti ) = -.2 pixels

recovery time = 1.1 seconds
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by two orders of magnitude, the Initial position and

velocity parameters associated with the target truth model

had not changed; therefore, the target "appears" to be

V moving less harshly at the onset of the simulation to the

V larger pixel size than It had for the nominal case. Another

interesting facet about this simulation is the stablity

associated with tracking the estimated y-position. The

* peak-mean error estimate after the onset of the turning

maneuver had improved to 1/6th of that estimated by the

benchmark run given in Table 6.7 (as expressed in pixels,

even though the physical pixel sizes themselves have changed

between the two cases).

6.6 Target Trajectory Sensitivity

10 This section analyzes the sensitivity of the tracking

algorithm against two target trajectories, #5 and 16, for

* . which the algorithm had not been previously tuned. Unlike

the sensitivity studies in the last section, the effects of

bending/vibration are included In the truth model for these

analyses. The trajectory sensitivity analyses are conducted

with the GM MMAF tracking algorithm against targets pulling

a 10-g turn.

6.6.1 Sensitivity to Trajectory_ L5. The first

trajectory to be analyzed is trajectory 15. As shown in

* Figure 2.5, trajectory #5 is accomplished by rotating

trajectory 02 by 450, thus reorienting the truth model

trajectory generation in space rather than redefining the
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orientation of the inertial coordinate system. The perfor-

mance plots are shown in Figures G-1 through G-8, the

statistical data appears in Table 6.1 Q , and the dominant
.

filters throughout the tracking simulation are depicted in

Table 6.20. The statistical data shows that both the time

averaged mean and one sigma deviations have increased for

all time as compared to the benchmark. However, a direct

comparison of x-channel or y-channel results for the two

cases doesn't make total sense, since the trajectory charac-

teristics are now rotated with respect to the tracker's x- A

and y-directions. Also, reviewing the time histories of y-

minus position and y-plus position show that the filter
4.

initially (for time less than .8 seconds), has difficulty in

estimating the actual y-position, which is depicted by the
• .-

mean error estimates fo Figures G-3 and G-5. This phenomena

had only been experienced at the onset of the turn maneuver

In previous scenario simulations. In addition, the data

enumerated in Table 6.20 shows that the MMAF algorithm

does not consistently identify a dominant filter for any one

significant stage of the scenario. This is due to the

orientation of the target and the orientation of the

velocity vector not dominating any one direction with

respect to the field-of-view, especially prior to the

maneuver initiation, but equally represented in both the

FLIR x- and y-directions.
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, .".' Table 6.19

Trajectory #5 Statistical Data
GM/MMAF/T5/10-G

Temporally Averaged Time Interval
Error Parameter
(mean / 1 sigma) [0.5 , 2.01 [3.5 , 5.01

Xerr(ti .0170 .6824 .1464 .8269

Yerr(ti ) .0407 / .6911 .1999 / .6552

Xerr(ti + ) .0730 / .6302 .0565 / .7491

+
Yerr(ti ) .0534 / .6106 .2284 / .5897

x-centerr(ti ) -.0083 / .1048 -.0748 / .1238

y-centerr(ti ) .0420 / .0802 .1353 / .1789

y peak-mean error (ti ) = -1.4 pixels

+
y peak-mean error (ti ) = -1.1 pixels

recovery time = .6 seconds

Table 6.20

Trajectory #5 Dominant Filters

Frame Dominant Filter(s) Remarks

1 - 14 01 Acquisition phase

15 - 16 I, #5 Attempts to follow a
y-dixection maneuver

17 - 69 11, 12, 53, #5 Intermittent behavior
between y-direction
and 10-g maneuver

70 - 150 #2, #4 Attempts to follow a
x-direction maneuver
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6.6.2 Rampinq Acceleration at Turn Initiation.

Trajectory 16 is of the same configuration as trajectory 12

with the exception that when the pull-up maneuver occurs

(time = 2.0 seconds), the acceleration increases as a ramp

function and attains Its maximum after 5 sample periods have

expired, rather than occurring as a step change. This type

of acceleration profile is more realistic, less harsh than

the artificial step increase in acceleration. Figure 6.2

shows the initial acceleration profiles at commencement of

the pull-up maneuver for both trajectory #2 and #6. Notice

that the greatest difference between the two trajectories

occurs in the x-direction acceleration profile. The

trajectory #2 accelerations for the x- and y-directions are

expressed as:

ax  -LVmagcos(Wt) (6-3)

ay =wVmagsin(wt) (6-4)

where:

Vmag = magnitude of velocity at t=0

W= turn-rate of the target

t = time, measured from maneuver initiation
= tsimulation - 2 sec (Note: applicable for the
maneuver to begin at tsmulaton = 2.0 sec)

To effect a ramping acceleration, Equations (6-3) and (6-4)

are premultiplied by a dimensionless ramp function of the

following form for the first S sample periods after maneuver

initiation:

r(t) = 6t (6-5)

122



.,,- where the 6 is present to account for the ramping effect to

attain its maximum after 5 sample periods (each sample is

1/30th of a second). Thus, multiplying Equations (6-3) and

(6-4) by Equation (6-5) and integrating the outcome produces

I I
ax - ay

del

0 2.0 TIME 2.0 TIMEI I
a) TRAJECTORN 42

I I
I I

a a

2.0 TIME 2.0 TIME
2.17 2.17

b) TRAJECTORY #6

UNITS: TIME - SECONDS 2
ACCELERATION - METERS/SECONDS

Figure 6.2 Trajectory #2 and 06 Acceleration Profiles
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the resultant x- and y-direction inertial velocity

relationships described by:

Vx = Vma{6[tcos(wot) - (l/w)sin(Wt)] - 1) (6-6)

Vy = 6 Vmag{(1/w)[cos(Gjt) - 1] + tsin(G)t)) (6-7)

and

Vx = Vmag @ t = 0.0

Vy = 0.0 @ t = 0.0

Integrating Equations (6-6) and (6-7) provide the following

x- and y-direction position relationships:

xt = 6Vmag{ 2/w)2 [cos(w)t) - 11 + t/wsin(wt) - t) + xto (6-8)

yt = 6Vmag{ [2/w 2 sin(d t ) ] 
- t/l + cos(w~t)]J + yto (6-9)

where:
O

Xto = true x-position at time = 0.0

Yto = true y-position at time = 0.0

Upon implementing these relationships into the GM MMAF

tracking algorithm, a slight enhancement in y-direction

performance is expected for the simulation beyond time - 2.0

seconds as compared to the benchmark data with bending

included appearing in Figures E-9 through E-16. The perfor-

mance plots appear in Figures G-9 through G-16 and the

statistical data appears in Table 6.21. Upon comparing the

perfromance plots for the two cases, no apparent differences

are discernible. As the data in Table 6.21 reveals, the

mean errors in the estimates of y-position and y-centroid

error have improved both at time equal to ti and ti as
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-\ ~~.-'compared to the benchmark including bending and vibration as

shown In Table 6.9. In addition, when comparing the one

sigma values for all time, this simulation (for which the

acceleration begins as a ramp) shows a slight improvement

over the case where the acceleration acts like a step in the

y-direction, which is expected. One additional note is that

the dominant elemental filters for this simulation (not

shown) are basically the same as Table 6.10.

Table 6.21

TraJectory F6 Statistical Data

GM/HMAF/T6/10-G/Q)B1

- ~ Temporally Averaged Time Interval
tO - Error Parameter

(mean /I sigma) 10.5 ,2.0] (3.5 ,5.0]

xerr(ti ) .0427 /.6309 .1878 / .7882

Yerr(ti ) .0586 /.6439 .0397 / .7693

xerr(ti ~) .0510 /.5869 .1431 / .7275

+erti~ .0439 /.6052 .1803 /.6683

x-centerr(ti 5.0025 /.1318 .0468 /.1463

y-centerr(ti ) .0091 /.0706 .2814 /.2204

y peak-mean error (ti) -2.2 pixels

y peak-mean error (tj. -.8 pixels

recovery time =.6 seconds
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6.7 Compendium.%4 %

" "-This chapter has analyzed several aspects pertaining to

airborne tracking systems simulations. First, the

potential of operating at a 50 Hz sample frequency versus a

30 Hz rate was investigated for both the Gauss-Markov

tracker and the constant turn-rate model tracker, utilizing

a single filter configuration. Secondly, both tracker

models were evaluated with respect to adding the bending and

vibration effects of a large space structure to the truth

model without changing the basic structure of the filter,

thus representing a reduced-order filter. After evaluating

these effects against the single filter configuration, the

same analysis was performed with the Gauss-Markov MMAF

tracking algorithm. In addition, the magnitude of the

bending was increased and filter tuning was performed to

compensate for this unmodeled effect. After the bending and

vibration analysis, a sensitivity study was performed in

order to evaluate the effects of changing pixel size, target

type, or correlation time, driving noise strength, and

sensor-to-target range. This scenario sensitivity study was

then followed by a sensitivity study of two target trajectory

profiles for which the filters had not been tuned. The

conclusions drawn from these analyses are summarized in the

following chapter.
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VII. Assessments and Recommendations

7.1 Introduction

-. This chapter assesses the impact of the simulation

analyses discussed in the previous chapter and suggests

research areas requiring further study. Section 7.2

examines the simulations discussed in Chapter VI and

4. evaluates each for their effect on the FLUR tracking

algorithms. Section 7.3 addresses the preliminary studies

performed on investigating a rotating rectangular field-

of-view concept and Section 7.4 enumerates recommendations

* for further study.

7.2 Assessments

7.2.1 Practicality of the 50 Hz Sample Frequency.. The

potential of implementing the tracking algorithm at a 50 HZ

4. rate rather than at a 30 Hz rate was investigated. The

impact of processing at the 50 Hz rate results in slight

improvements in estimation: both the mean error and the

variance about the mean error in both the x- and y- C

directions decrease by a small amount (average 6% decrease).

-~ However, the computer loading penalty paid as a result of

-, the more frequent sampling greatly outweighs the potential

benefits obtainable. As an example, the computer processing

time associated with a ten Monte Carlo simulation utilizing

the single filter Gauss-Markov tracking model results in a 4

73% increase for the 50 HZ version over that which had been

* .r;experienced with the 30 Hz version. One would expect a 67%
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increase since 50/30 = 1.67; the remainder of the increase

is due, perhaps, to the overhead associated with the

statistical evaluations when performed on the CYBER. As a

consequence, the 30 Hz sampling frequency is sufficient for

the tracking algorithm to provide good performance and at

the same time minimize computer processing time.

7.2.2 Impact of Hardware Bending/Vibration. The issue

related to the repurcussions due to the bending/vibration

phenomena addresses two concerns. The first concern

considers the effect on the filter algorithm as the expected

degree of bending and vibration of the space structure (see

Appendix A) is considered in the truth model while the

filter is not provided information regarding this phenomena.

* This is a robustness concern.

Sections 6.3.1 and 6.3.2 discuss this impact with

respect to single filter tracking algorithms based on Gauss-

Markov acceleration and constant turn rate models,

respectively, and Section 6.4.2 discusses this issue with

respect to Gauss-Markov NMAF algorithm. In all three

instances, the inclusion of the bending and vibration

phenomena displays little or no effect to the mean position

errors as compared to the same scenario without the

bending/vibration states. However, the error standard

deviations associated with the error reflected increases on

the order of 0.2 to 0.3 pixels. Only in the case of the y-

position estimate mean error and one standard deviation with
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the CTR filter did the total RMS error exceed one pixel,

'~ thus distorting the tracking ability of the algorithm. Both

Gauss-Markov algorithms, the single filter and the MMAF,

maintained favorable tracking ability with the expected

vibration and bending levels included In the truth model.

The second concern addresses the effect of Increasing

the vibration/bending phenomena by an order of magnitude;

this was presented in Section 6.4.3 without additional

tuning. This simulation showed that, although the filter's

mean errors did not change significantly, the one sigma

values increased by a factor of four or five, to between 1.5

to almost 2.0 pixels. The desired tracking accuracy to less

than a pixel in resolution is severely impeded by the large

standard deviation values. Thus, to maintain adequate

resolution and tracking performance capability, the degree

of bending and vibration due to the flexure of the structure

should not exceed that discussed in Appendix A, provided no

filter remodeling has compensated for this effect. If

retuning Is allowed, as was presented in Section 6.4.4, it

was shown that the MMAF's ability to select the appropriate

filter model for accurate tracking and pointing was severely

impeded by the measurement variance compensation.

7.2.3 Filter Sensitivity to Varying Parameters. This

section summarizes the relationships observed for varying

selected parameters in the tracking simulation as discussed

In Section 6.5. The first scenario, scenario #1, shows that

increasing target range by two orders of magnitude from
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nominal, where the nominal is 20,000 meters, results in

comparable performance (mean t 1 sigma values) to the

benchmark scenario when the pixel size Is decreased by two

orders of magnitude from nominal (20 Jprad on a side). This

concept provides a viable comparison to any other tracking

algorithm where either the range or the pixel size is

different from that which is employed In this algorithm.

The second scenario, scenario 14, consists of the same

* parameters as the benchmark scenario with the exception that

the target pulls a 20-g turn instead of a 10-g turn. This

scenario is performed with the intent of establishing the

benchmark of performance for a subsequent 20-g simulation

and demonstrating the capability of the tracker to maintain

good performance against a vehicle pulling a 20-g turn.

This performance data proved comparable to previous efforts.

The third and fourth scenarios, scenarios #5 and 07, -

reflect different realizations of filter-assumed correlation

times than had previously been assumed. Both showed that,

when tracking a target represented by a correlation time

other than that for which the filter was tuned, tracking

performance was not severely impacted. However, both cases

exhibited a time-increasing bias in the x-channel commencing

at the time of the maneuver Initiation. Also, the bias

tends to worsen as the correlation time gets faster, i.e.,

represented by a smaller 7r. Also recall that the mean

squared value of acceleration with respect to the driving
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white noise remained equivalent to that In the benchmark

* case where the slower correlation time had been assumed.L

This gives rise to the conclusion that, given a bank of

-~ filters based upon a particular set of assumed correlation

time parameters, if a time-increasing bias in the mean error

-. is prevalent, a possible way to counteract this effect would

be to Increase the strength of the filter driving white

noise, possibly via an adaptive parameter estimation method.

The fifth scenario, scenario #9, demonstrated the rela-

t. ionship between pixel sieand filter "01, given thatal

other parameters don't change. This demonstration showed

that, as the pixel size decreases, the filter white noise

strength should decrease by a corresponding amount (both

.. decrease or both Increase) if the same basic estimation

characteristics are to be maintained.

7.2.4 Target Trajectory Results. The tracking

algorithm's performance against two target trajectories

not previously considered showed that the algorithm

adequately tracked the targets. However, in both c".*ies, the

R143 value of the error statistics approached the total of

one pixel, the bound upon which good tracking is predicated.

7.3. Investigations of Rotating Rectangular Field-of-View.

Preliminary investigations as to the feasibility of

implementing a rotating rectangular field-of-view filter

have been conducted. The intent of these investigations was

to determine a method by which a rectangular FOV filter
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could be rotated so as to align the "elongated" side with

the best estimate of the acceleration vector. The reason

behind desiring a rotating filter is the possibility of the

tracking algorithm to perform its function with four filters

rather than five (or even more if one were to allow a larger

field-of-view dimension to exist in directions other than

pure azimuth and elevation), as had been done previously.

The first instinct in pursuing this task was to utilize the

estimated acceleration vector, as determined from the

multiple model adaptive estimator subroutine embedded in the

software, for orienting the longer side of a rectangular

field-of-view. Analysis of the data provided from a single
'p..

Monte Carlo simulation for the Gauss-Markov tracking

algorithm against a trajectory #2, 10-g maneuver revealed

that utilizing the estimated acceleration was not a good

choice. The reason for this is that the estimated accelera-

tion vector is a noisy estimate that can change quite

rapidly, and did in fact change sign (direction) from frame

to frame at one and one-half seconds into the scenario.
'

This is where the estimated acceleration vector tended to

oscillate between the first and second quadrant (of a

Cartesian coordinate system) for a period of 17 frames. In

addition, from a frame-to-frame evaluation of the respective

angular separation of sequential estimated acceleration

vectors, rotations of 30 pirad to 135.31 arad would be

required in order for the FOV to maintain alignment of its

"elongated" side with this vector. The inconsistency
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associated with estimating the acceleration vector and the

corresponding large rotation angle (135 mrad = 0.75 deg)

necessary to rotate an array of picture elements compelled

further consideration of the rotational concept with respect

to following the estimated velocity vector.

Initial evaluation of the estimated velocity vector as

a candidate by which to command rotations showed much more

stable characteristics than did the estimated acceleration

vector. Oscillations from frame to frame were not apparent

and angular difference from frame to frame ranged from as

small as 10 )Arad to as large as 7.38 mrad. Rather than

attempt to align the "elongated" axis with the estimated

velocity vector (as was the intent If estimated acceleration

00 were used), aligning the "short" axis of the rectangular FOV

with the velocity vector direction is considered since this

maintains the acceleration vector along the "elongated"e side-

(assuming that acceleration is predominantly orthogonal to

velocity).

Several rotational methods were attempted using '

different combinations of the filter states, the truth model

states, and the hotspot intensity peaks, i.e. rotate filter

states, truth model states, and hotspot intensity peaks all

in same direction or rotate filter states and truth model

states In one direction and rotate hotspot intensity peaks

in the opposite direction. All evaluations of these

rotations provided similar results. The tracking algorithm
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performed well initially and then tended to "lose track" for

the majority of the simulations. This problem stemmed from

the fact that, although the states from the current frame

are rotated, the rotated image array generated from the

current frame is correlated with the "smoothed" image

(template) from the previous frame which is not rotated with --

respect to the current frame. This correlation of the

present data with the previous image (smoothed) is the

mechanism by which the filter measurements are extracted.
In effect, what has been shown is that, if the currently

generated rotated image is correlated with an unrotated

image (or otherwise interpreted as delaying the rotation by

a sample period), the performance capability of the Gauss-

Markov tracking algorithm degrades significantly. This is,

in effect, a suboptimal implementation of the rotating FOV

method. One means of compensating for the time lag would be

to rotate the template (previously generated image) by the

same amount, and at the same time, as the filter estimates.

However, if the FLIR image plane is physically rotated by an

angle 0, the image in that plane appears to rotate by -0;

therefore, the simulation of the true image rotation by 8

corresponds to the tracker's x and y axes rotated with

respect to the original orientation and the reconstructed

image requiring a rotation by -e. K--',

A method of implementing a rotation to a spatial image

array can be found in (6). This method transforms an N X N

.- x-y spatial array to a 2M X N/2 R-theta plane array as
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.... " depicted by Figure 7.1. Each row in the R-Theta plane 4'4

corresponds to an angular displacement in the x-y plane from

the center of the plane; each row (or each elemental -p

-' increment in the horizontal direction) equates to an

increment of K/N radians if an image is considered to cover

N (x) - N/2 (R) - '

0

N 2N

a) Spatial Domain

NOTE: ILLUSTRATED FOR N=12

b) R-Theta Plane

' . Figure 7.1 Spatial Domain to R-Theta Transformation
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0
360 In the x-y plane (symmetry can be exploited if the x-y

plane lies in the Fourier domain, which is presently not S

considered, and, in this case, an image can be considered to

cover 1800 in the mapped space (x-y plane) and accompanied

by its complex conjugate).,,

Rotations are simply performed in the R-Theta plane by

shifting rows up or down by the number of incremental

angles that correspond to the desired angle of rotation. S

One would expect not to be able to rotate by exactly a

desired amount, but to the "closest" incremental rotation

possible based upon the number of "N" discrete quantities. S

Since the image array in the GM tracking algorithm is

represented by a 24 X 24 array, each row, if this method

were to be employed, would correspond to an increment of S

x/48 radians. To implement such a rotational algorithm for

this tracker, preliminary investigations have disclosed that

angle increments in Theta on the order of 1 to 3 mrads would .

be necessary for the filters to be able to maintain "lock"

on a frame-to-frame basis. One topic discussed in the

following section is a proposed implementation technique -

that may warrant further investigation.

7.4 Recommendations for Further Study

The following recomendations are suggested for further

study in enhancing the FLIR tracking system:

1. Further investigation of the effects of the

bending/vibration phenomenon may be necessary. If the level
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o bedn/irto is aculygetrta.htwihi

.b performed o(bndn/vbationg Int acoallyerateon than tat whiech) is

the possibility of modeling the bending effects in the

filter model should be conducted. Representing the bending

effects in the filter model via reduced order modeling

should be considered.

2. Implementing the rotating rectangular field-of-view

should be Investigated. One possible means of rotating the

~1 Image template would be to reconstruct the image array

0consisting of a 24 X 24 intensity data array into a 96 X 96

intensity data array (effectively transforming each element

in the 24 X 24 array Into 4 elements in the 96 X 96 array)

j ~0 and perform the R-Theta transformation previously described.

This redefined image could then be rotated in increments of

w/192, or 3.27 mrad. Although the 96 X 96 array definition

provides a good starting point for possible Implementation,

it is certainly not the only possible choice. The image

could then be inverse transformed back to the x-y spatial

domain and redefined to a 24 X 24 intensity data array to be

correlated with the currently constructed image.

3. The problem of initial target acquisition should be

investigated. Since accurate velocity and acceleration

estimates are not available a priori (as was assumed in this

effort), they should be determined on-line. One potential

solution would be to estimate velocity and acceleration by
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the method: vx = Ax/At and ax = Avx/At, where the x-centroid

:: ." and y-centroid locations at adjacent sample times could be

--i used to determine Ax and Ay. Also, At should be made as

small as computation time will allow and still minimize the
.4'

time-to-acquisition. Another potential solution would be to

. employ the inverse covariance Kalman filter propagation and

update forms described in Maybeck (9) to estimate Initial

position, velocity, and acceleration variables on the basis

of a batch of N measurements (no a priori information

-I
assumed, i.e., P-1 = 0), and then switch back to the

conventional form once P- becomes nonsingular.

C 4. Still requiring investigation for this tracking

algorithm is an indepth target/decoy sensitivity analysis.

.,-. Sensitivity to the following parameters should be pursued:

(1) decoy intensity, shape, and size, (2) separation from

the target during decoy ignition, and (3) tracking time

prior to decoy release. Image and/or filter residual

-. characteristics should be analyzed in order to suggest ways

in which decoys may be distinguished from targets.
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ADpendix

Mechanical Truth States Development

The mechanical bending/vibration model used In this

study was based on a report prepared for AFWL by the staff

of R & D Associates and of Cambridge Research (15). This

model is by no means the only possible structural configura-

tion for a space-based structure; however, it does provide

the necessary mechanical considerations felt necessary to

describe the effects of bending and vibration at several

locations about a typical large structure. The predominant

sources of random excitation in a space based structure are

caused by (15:4-1):

1. Coolant flow through the mirrors, the resonator
power management equipment and the associated
supply systems;

2. Fluctuating combustion chamber pressures;

3. Fluctuating pressure generated by the laser exhaust

flows;

4. Conditioning and transfer of laser reactants; and

5. Steady state operation of the control moment gyros.

The power spectral density (PSD) curve of Figure 2.2, which

Is shown on the following page as Figure A.1, was determined

to be the predominant contributor to the bending/vibration
I

effects on a tracker's line of sight, with the response in

both the x- and y- directions being similar. Although this

PSD response represents the disturbance seen at the

secondary mirror LOS, a similar response with approximately
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Figure A.1. Dominant Vibration Response Spectrum.
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a 60 dB isolation between the two is expected at the

"' tracker's LOS (5). This research effort approximates the

response of the system due to the PSD curve of Figure A.1 to

be represented by a second order Markov process described by

the transfer function:

2xb  K b4,n2 .:

G(s) = - = 2 2 (A-i)
Wb s + 2 'WnS + wn

-pq

where:

On = bending/vibration mode natural frequenc, = .5 Hz.
= 3.14159264 rad,/sec.

Kb = gain adjusted to obtain the desired root mean
square (RMS) bending/vibration output, Obv:
where abv is defined later In Equation (A-23)

= damping ratio, = .1.5 (17:359)

The roots of the characteristic equation can be determined

by solving the quadratic equation formed by setting the

denominator of Equation (A-i) to zero, resulting in:

51,2 a b + JI~b =-.47124 + J3.10605 (A-2)

The corresponding state space representation in standard

observable form for both directions would appear as:

Xbl FII F1 2  0 0 Xbl 0 0

Xb2 F21 F2 2  0 0 xb2 GbO [vbx1
+ (

Ybl 0 0 FII F 1 2  Ybl 0 0 Lby-

yb2 0 0 F 2 1 F 2 2  Yb2 0 G b
L-.

and:
-S
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*- lb [10 0 0 Xb11

1Yb11

where:Lb2

F1 2 = 1

F2 =J -9.647547 rad. 2/sec.2

F22  -2,wn =-.94248 rad./sec.

Gb =Kbwn
2  9 .647547Kb

Equations (A-3) and (A-4) are of the form:

x =Fx + Gw (A-5)

Hx (A-6)

The state transition matrix, b.can be derived by

employing the following relationship:

t b(At) = -1 ffsI-E-bJ- 1 It (A-7)

where:

L = the Laplace operator

I = the identity matrix

At the sample period, ti+i -tj

Performing the operation defined by Equation (A-7) on E

results in the following form for the bending phenomena

state transition matrix:
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%ib 1 b2 0 0

~,(At = 3 %Ob 0 0.. -.

o 0(At) (A-8)

o 0 O'b3 Ob4 .

where:

Ol exp(-GbAt)(cos(wbAt) +(cb/wb)sin(wbAt) I

=.9945787985

Ob2 = exp(-o'bAt~r(/Ldb)sin(wbAtfl

= .03275523095

2
Ob3 = exp(-abAt)(-(l + (abl~b) Isifl(wbAt)

= -.1040812213

O4= exp(-cabAt)[cOs(wbAt) - (b/wb)sifl(G~At)l

= .9637076486 ::
A dist-rete-time model of the propagation of ?S is given by:

K.b(ti+1) = kbx-b(ti) + w(A-9)

where:

ti+~ 1

tj

and wb has the following statistics:

T
E(IYd (t i)Wbd (tJ)J =Qbd

6 iJ (A-12)

and:

ti
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(.

(-. bdl Qbd 2 0 0

IQbd3 QW4 0 0
(A-14)

0 0 Q0I Q(-2

A 0 0 Qbd3 Qbd4

where:
ti +1

" 2 2 2
Obd = Gb a dr= .3254294713 Kb

ti

A- / 2 2
=)d Gb #b20b4dr = =3 .01038495095 Kb

* titi1 22 2

0bd4 = 2 = - 08 .3055407229 Kb 2

ti

. tj

A-. Note that the elements of QW have been expressed in terms

of the power spectral density gain parameter, Kb. Although

current technology assessments on large space structure

mechanical disturbances indicate radial displacement levels

consistent with those of Figure A.1, this parameter can

easily be varied to analyze the level of disturbance that

would degrade filter performance.

For the simulation implementation, the discrete-time

propagation equation was implemented in the following form:

.blti+l) t _jjb(ti) + A n(ti) (A-15)

where:
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=Cholesky square root matrix of j

tin~t = vector of independent, unit-variance,

gaussian noises

In order to determine the value of Kb, the form of the

covariance matrix must be known. If uncorrelatedness

between the x- and y- directions are assumed, then the

covariance matrix appears as:

Pbl Pb2 0 0

Pb3 Pb4 0 0

0 0 Pb1 Pb2

0 0 Pb3 Pb4

Now, if the time derivative of the covariance matrix Is set

equal to zero, the steady state value of Kb can be derived

by solving the following relationship:

T T 0(-7E-b =Eb~b + P-bE-b + Qb~ =0 (-17

which yields a 4 X 4 block diagonal matrix where each 2 X 2

block is of the form:

0 21(A-18)
I b4 + Fb3Pbl + Fb4Pb3 2 Fb3Pb2 + 2 Lb4Pb4 + b

This Implies that:

Pb2 =0 P b3 (A-19)
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Two equations with three unknown values (Pl Pb2, and Gb)

remain:

Pb4 + Fb3Pb1 = 0 (A-20)

2
2Fb4Pb4 + Gb = 0(A-21)

Another equation relating one or more of the unknowns, Gb,

* Pbl, or Pb4, is necessary in order to accommodate a solution

to the above relationship. The variance of the output

provides such a relationship:

Ezz = B(zz T I

*= E(YLbxb T HT

=[Efxbl
2  -22)l2

0 9bj1

Making use of the fact that:

Ex12 1-EY 2 1 Pl a 2 (A-23)

and Obv 2is equal to the area under the PSD curve which Is

approximated by the following equation (a geometrical

approximation to the area of Figure A.1):

2 2 2
abv =(. 5 )(Kb ) + (1/2 )(.2)(l4Kb

+ (l/2 )(7OO)(l
5 Kb2

= 5 2 5 1.9 (Kb 2) rad. 2 /sec. 2  (A-24)

where:

Kb 2 PSD magnitude at zero frequency
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The first term in this approximation is represented by the

,.- area in Figure A.1 shaded by horizontal lines, the second

term by the area shaded by vertical lines, and the third

term by the diagonal lines (Note: levels below 1E-19 are

ignored). Equation (A-24) is used to solve Equation (A-20)

for Pb4 in terms of the zero frequency PSD value, Kb:

2 2 2 4 4
Pb4 = On Obv - 5.183E+04(Kb ) rad. /sec. (A-25) V

The derivations thus far have defined all of the parameters

necessary to perform a time propagation of the states of the

bending/vibration model. In order to provide measurement

update relationships compatible with the tracking algorithm,

the measurement variables should be expressed In terms of -

pixels. Since the propagation variables are expressed in

terms of radians, a simple conversion from radians to pixels -

Is necessitated, with the resulting output relationship

appearing as:

k 0 0 "PI
= [0] Mb (A-26)
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APPENDIX B

SIMULATION PROGRAM FLOW DIAGRAM
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Appendix B

Computer Simulation Flow Diagram

Read in parameter values, i.e. number
of frames, number of simulations, filter
and atmospheric Jitter variances, type
trajectory, correlation time constants,

turn rate for pull-up maneuver, pixel size
and initial position

Begin he smulaio

Intalz shf aibesote

daaarytut oe tt
vetr an 1todlcto

Intalz th tt-rniinmti

* I Initialize hf cvariale mothed

daitalarrays, truth model Intat

Initia itesttetnstion matrix

aDefthe dste oise streth
matr-f-ixw for each filter wt

renietializ the conitialc mastixn

andstte ecormatixfo

each filte



[., .' . a . . .. a - . -. -. .. - a

-a'

xbe

Get the initial hotspot offsets from
the target center of mass

Begin tracking the target for the
number of frames read in from

the input data file

Define the Gaussian peak locations
for target image simulation based

on centroid position'a I
Get the measurement noise array and

define a measurement noise array for
each filter's field-of-view size

Calculate the measurement noise a

for each filter I

Determine the measurement array I
for each filter "

Pad the measurement arrays with zeros
for those elements greater than the
filter's field-of-view (measurement

array is dimensioned 64x64)
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Kdcorrelated and uncorrelated measurement
noise to filter measurement data

(See Section 4.3.2)

.J.

Create the linear offset measurements
by comparing data array to the smoothed
data array (generated from the previous

frame) in the enhanced correlator

Incorporate the measurements and get
updates of filter states and covarlances .

Calculate relative filter probabilities

Update the multiple model adaptive
filter estimates

Compute the shift information from
the center of the field-of-view

using the MKAF estimate to
initiate data centering

I'____
Shift the data to center it, then
perform a smoothing operation to
establish the template for the

following frame

Print the filter's template and/or
print the data array
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7--7-7 -77777 77-7 .-.-.- -h|

'I,'

Propagate the filter estimates forward
in time by one sample period

'." Calculate the multiple model adaptive

filter estimate prior to the measurement

Apply control by redefining location of

the field-of-view for each filter
prior to the next measurement

Test for loss-of-track, or when the
estimate of target position is within
one pixel from the edge of the FOV,

and perform reaquisition if necessary

Propagate the truth model states forward
in time by one sample period

Return to "Define the location of
the field-of-view for each filter

with respect to the initial position"
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APPENDIX C

SINGLE FILTER SIMULATIONS
BENCHMARK AT 30 Hz AND 50 Hz
(REFERENCED FROM SECTION 6.2)
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* BENDING AND VIBRATION ANALYSIS

(REFERENCED FROM SECTION 6.3)
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APPENDIX F

MULTIPLE MODEL ADAPTIVE FILTER SIMULATIONS
SCENARIO SENSITIVITY ANALYSES
(REFERENCED FROM SECTION 6.5)
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This tti7 ex rrds t he AFIT rfparch drect p t)w-rd

r ploT'lhi' a irilrd correlat ion tracker with a alman fiIter
hank ,nhanr' r! - I j! t ion tracker in a hib err y I i r 7'

wp [-,, ri ; y5 , '1 Ai r trne t r - t3-arr f ra ckd by a Bayo' ian

mii 1 t 1p lP mon , adip t iv ft I t r inq (MMAF) alor ithm, which

l1t 1 7 an i " 'f i tr r f d r 3rrin, dP 1pr-t r 1 the

me --ni rr u' nt f fr rm, ,rr fI I r tw -d mens ona I p r, !7 t- Ion dat .

rTw, r I ' rrr I ir ,,it7 dynmmir mod s as ar exerr- ise d: a I in eat

ir r; krn, , I:P r at ion model, and a nonlinear, con!tant "

torn r I' ml I . F-r formance ar alyses ar e accompli1hd,( via

HnnO i r I r m, 1 t i ri techniriucp. Fxtending the adaptive

pr t P tiia l of The tra(7king algorithm is of primary emphasis.

Thp ff f,cts b;endinq and vibration of a large space

7,t rr-IIFre o I he FLIR's ability to resoive targer position is 7.

analy ,7'. I -,, a performance comparison/simulation time
tra(nf if 1s 'ndiicted with the tracking algorithm operating

t brt h 30 1 ' i ( H Sensitivity studies of alaptive

r u 1n-i venF; to varying target trajectories, various7

filt-r -assrns correlation times, range to pixel size

r la t inshi[ arid pixel size to filter driving white noise

* strrri',th rel ionships are performed. The robustness of the

multipI moO ,  i'torithm is demonstrated by its ability to

adapt to sccr irios which it had not been previously tuned.
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